声明:本文为个人观点,如有不同意见,希望评论区指出,共同进步。
文章核心思想:
文章作者提出了一种基于对于图网络的改进方法,对图的边进行了利用。
既然是图网络,那肯定是基于一个完全图的,就是每个节点两两相连的那种图。
其中呢,每个节点表示一个样本,这个样本可以是未知类的,也可以是已知这个样本是那个类的。
每个边有两个值,分别代表着两个相连的样本的簇内相似度以及簇间不相似度。举个例子,如果样本A和样本B是同一类,那个他们就是[1, 0],如果他们不是同一类,连接他们的这条边就是[0,1],如果A和B都是训练用的节点,而不是测试用的节点,那么他的值基本也就固定下来了,要么[0,1],要么[1,0]。
这样说大家就明白了。作者搞了N个类,每个类中有K个样本,然后又找了T个样本作为测试样本,把这N*K+T个样本给连成一个完全图,然后,根据边和每个节点的特征值来聚类(感觉无监督和小样本做到后面总归是五花八门的聚类算法),最终计算出那T个样本是属于哪个类,进而实现了如何进行小样本学习,虽然文章的本质不复杂,但是中间的计算还是很复杂繁琐的。
从全局来理解,就是这样
文章关键词:小样本模型 聚类 完全图 边集
原文摘要:
In this paper, we propose a novel edge-labeling graph neural network (EGNN), which adapts a deep neural network on the edge-labeling graph, for few-shot learning. The previous graph neural network (GNN) approaches infew-shot learning have been based on the node-labeling
framework, which implicitly models the intra-cluster similarity and the inter-cluster dissimilarity. In contrast, the proposed EGNN learns to predict the edge-labels rather than the node-labels on the graph that enables the evolution of an explicit clustering by iteratively updating the edgelabels with direct exploitation of both intra-cluster similarity and the inter-cluster dissimilarity. It is also well suited for performing on various numbers of classes without retraining, and can be easily extended to perform a transductive inference. The parameters of the EGNN are learned by episodic training with an edge-labeling loss to obtain a well-generalizable model for unseen low-data problem. On both of the supervised and semi-supervised few-shot image classification tasks with two benchmark datasets, the proposed EGNN significantly improves the performances over the existing GNNs.
简单计算过程
我们来解读下伪代码
我们可以清楚的看出来,伪代码其实写的很清楚,但是对于要coding的人来说,我们还要知道那几个大函数到底是怎么做的。
我们可以看到,这个整体更新的方式像极了EM算法。
第一步是获取特征,这个embedding的网络在文章的图3。
第二步是初始化边
第三步是进入一个更新循环。
第四步是更新节点
第五步是更新边
然后不断进行第四五步的循环L次,结束后计算出我们要测试的数据所属于的类的概率。
看论文的实验结果,我们确实发现结果要比之前的图网络好了一点,但是不像图网络刚出来那时候那么猛,期待未来发展。
论文链接:https://arxiv.org/pdf/1905.01436.pdf
论文作者:
Jongmin Kim∗1,3, Taesup Kim2,3, Sungwoong Kim3, and Chang D.Yoo1
1Korea Advanced Institute of Science and Technology
2MILA, Universite de Montr ´ eal ´
3Kakao Brain
论文代码:https://github.com/khy0809/fewshot-egnn