机器学习
mobai-ch
研究生在读。
展开
-
Kaggle竞赛入门篇--Digit Recognizer 整活
这篇文章主要讲下Kaggle要怎么整活我们首先进入Kaggle官网,注册自己的账号,然后选中左方的Compete找到Digit Recognizer这个比赛并参加。接下来,我们可以看到kaggle competitions download -c digit-recognizer这样一行命令,这行命令的作用是通过kaggle的api直接下载kaggle的数据集,不得不说,这点确实要比天池做的好,一套齐活了,首先我们要安装下kaggle的接口,做法也简单。pip3 install -i ht原创 2020-07-20 19:00:47 · 616 阅读 · 0 评论 -
对拉格朗日乘数法和KKT条件的简单理解(来自PRML的附录)
说实在这东西困扰我很久了,但是看了PRML最后的附录之后感觉茅塞顿开,这里讲下我看了之后的理解。首先我们来提一下拉格朗日乘数法:假设有一个函数f(x1, x2), 其中函数的限制是g(x1, x2) = 0, 如果我们要解f(x1, x2),那我们需要做一些什么呢?方法1:我们...原创 2020-05-12 16:51:19 · 395 阅读 · 0 评论 -
2019 CVPR 论文简单今日阅读
声明:本文为个人观点,如有不同意见,希望评论区指出,共同进步。关键词:Few-shot ;Tracking ;Unsupervised learning;UnOS: Unified Unsupervised Optical-flow and Stereo-depth Estimation by Watching Videos 描述问题:对深度图像和光流的预测作为计算机视觉的基...原创 2020-02-14 20:43:25 · 278 阅读 · 0 评论 -
粗读CVPR2019 论文 Transfer Learning via Unsupervised Task Discovery for Visual Question Answering
声明:本文为个人观点,如有不同意见,希望评论区指出,共同进步。文章解决的问题现有的大批量的视觉数据集,标签,区域选择边框为在图像中学习丰富的可表达信息提供了一定的基础。但是,如何将视觉概念给抽取出来并且传给一个视觉相关问题,并由一个问题回答模型给出这个问题的答案依然是当前要解决的一个点。我们称这类问题的总称叫做visual question answering (VQA)。文章中的做法...原创 2020-02-08 15:21:57 · 417 阅读 · 0 评论 -
[短文]CVPR 2019 Unsupervised Domain Adaptation using Feature-Whitening and Consensus Loss 粗读
声明:本文为个人观点,如有不同意见,希望评论区指出,共同进步。文章解决的问题一般来说,我们在一个数据集中所训练出来的分类器很难在第二个数据集中有同样好的效果,因为两个数据集的数据往往是在不同条件下获取的。所以为了减少这种问题带来的影响,作者提出了一种新的层,叫做domain alignment layers 来对中间层的特征来进行白化变换(此处给出维基百科,不再赘述)进而使得源和目标的特征分布...原创 2020-02-08 11:37:37 · 795 阅读 · 0 评论 -
2019 CVPR论文调研 [1]
这周,我读了一些文章,但是基本上是以读摘要和介绍为主的,所以只能算得上是一种对当前趋势的调研,调研的文章主题主要是:Few-shot Tracking 以及 Unsupervised learning,最近瘟疫流行,在家里也做不了其他的,主要就是了解趋势 以及补充一些数学知识了,在搞定PRML,花书和CMU的那套Lecture后,应该会出一下PRML的课后习题每周更新(这个如果有私信的话,我考虑下...原创 2020-02-01 20:56:25 · 443 阅读 · 0 评论 -
粗读CVPR2019论文 Edge-Labeling Graph Neural Network for Few-shot Learning
声明:本文为个人观点,如有不同意见,希望评论区指出,共同进步。文章核心思想:文章作者提出了一种基于对于图网络的改进方法,对图的边进行了利用。既然是图网络,那肯定是基于一个完全图的,就是每个节点两两相连的那种图。其中呢,每个节点表示一个样本,这个样本可以是未知类的,也可以是已知这个样本是那个类的。每个边有两个值,分别代表着两个相连的样本的簇内相似度以及簇间不相似度。举个例子,如果样本A和样...原创 2020-01-26 13:31:15 · 859 阅读 · 0 评论 -
[短]粗读CVPR2019论文 Deep Multimodal Clustering for Unsupervised Audiovisual Learning
声明:本文为个人观点,如有不同意见,希望评论区指出,共同进步。文章核心思想:作者首先给了一个问题,简单概括就是一段话。给你一个图像和一个音频,你要怎么把无声图像中的对象和对应音频中发出的声音给匹配起来,在一个音频中,声音往往是多个声源共同发出的,如何才能把声源中的K个发声源和图像中的K个发声源头给他组合到一起呢?就比如一个视频,一直一个画面,有鸡有鸭,但没有声音,这时候,给你一个音频,有鸡叫...原创 2020-01-23 17:29:18 · 1128 阅读 · 6 评论 -
【短文】粗读CVPR2019论文 Tracking by Animation: Unsupervised Learning of Multi-Object Attentive Trackers
我接下来将以自己的理解以及文章的原内容,描述下文章的大概内容,如果有误解的内容,还请大家指出,大家共同学习。作者信息,文章和代码Github的链接在文章最下方分享给大家。首先我来讲下作者大概做了什么。作者提出了一种无监督的MOT(多目标跟踪)方法,而无监督的方法是将输入的图像抽取特征之后根据不同的跟踪器来获取每个目标的信息并分层,最后把这些信息整合在一起进行重构,如果能够重构成原始图像,那么这...原创 2020-01-21 23:27:04 · 932 阅读 · 0 评论 -
粗读CVPR论文《Graph Convolutional Tracking》
声明:该文章纯属个人对文章的粗略理解,不代表作者观点,具体细节需请各位下方链接读原论文,如果有不同意的地方,还希望大家指出。论文简单理解这篇文章主要讲的是如何通过图卷积来实现目标跟踪。首先他显示指出了用SiamNet做目标跟踪的通病,就是不考虑时空连贯信息,一旦目标一定时间从视线中消失,或者说是出现明显的光照条件变化,那基本上跟踪器也就失效了。所以作者就通过图结构把 前T 帧的视频时空信息都...原创 2020-01-18 20:20:22 · 1289 阅读 · 0 评论 -
[短]粗读文章 DeepMapping: Unsupervised Map Estimation From Multiple Point Clouds
文章来来自于CVPR2019, 文章有三个要点:激光雷达SLAM生成多个点云,多级网络判断点是否存在,无监督学习首先给上这篇文章的摘要We propose DeepMapping, a novel registration framework using deep neural networks (DNNs) as auxiliary functions to align multiple...原创 2020-01-17 10:20:50 · 819 阅读 · 0 评论 -
没事简单读了下YoloV3的论文,跑了下模型。
今天我们来简单讲讲当前准确度比较高的网络当中速度最快的网络YoloV3,要知道当年Yolo出世的时候可是震惊四座,以短平快著称,就是精确性差了点,这次我们从论文简单分析下他的升级版本YoloV3。先看看论文: 首先,是YoloV3的性能对比;按作者的说法(我没有做过验证实验),YoloV3和SSD具有相同的精确度,但是速度要整整比SSD快了三倍,如果大家都用TitanX显卡来作为评...原创 2018-09-30 18:52:26 · 1155 阅读 · 3 评论 -
tensorflow.Keras 使用Resnet50 实现猫狗识别
最近几天做点小东西,因为懒所以不想用tensorflow或者slim再在底层写layer,就直接使用了tensorflow里面自带的模型,处理下数据,直接用了,后面想想还是比较有意思的,就把这个东西分享一下。 首先发个效果 接着直接上代码:首先是工具文件:import os,sysimport numpy as npfrom ...原创 2018-07-20 12:02:29 · 17825 阅读 · 9 评论 -
简单的前向传播模型实现(四层神经网络),菜鸟用于交流
#------------------------------------------------------------# ## forward spread algorthim with mathmatic# ## CopyRight:Jinlun#-----------------------------------------------------------##!-*-co原创 2017-10-15 15:26:31 · 1438 阅读 · 1 评论 -
新手浅见,学习笔记(机器学习中的图像特征提取)
我们知道,在机器学习的算法实现之前,我们首先要提取图像的特征,将图像变成一个个向量,只有这样,图像才能被计算机学习,准确说,只有从我们人类概念下的图像变成离散型的变量,然后给离散型的变量赋予具体的含义,这样才能够借助计算机来实现接下来的机器学习之类的工作,为了提高学习效率,我们依然可以学习一些图形学内处理的方式,这样就可以大大的提升开发效率,可以说,现在大部分的重复性工作在于前人故意的埋坑,这里就原创 2017-10-13 16:16:22 · 14741 阅读 · 5 评论