模型压缩之剪枝

模型剪枝(Model Pruning)是一种常见的模型压缩技术,目的是通过去除不重要的参数(如权重或神经元),减少模型的计算开销和存储需求,同时尽量保持模型的性能。剪枝方法特别适合需要在计算资源有限的设备上运行深度学习模型的场景,如移动设备、嵌入式系统等。

神经网络参数存在冗余,可以通过模型剪枝去除部分神经元而依然保持相近的表达能力。已有部分研究针对Transformer 的多头注意力模块剪枝,提出的剪枝方法在不严重影响模型性能的情况下去除大多数注意力头。

模型剪枝的类型

模型剪枝大体可以分为两类:

  1. 非结构化剪枝(Unstructured Pruning):在单个权重级别上进行剪枝,去除模型中不重要的个别权重。
  2. 结构化剪枝(Structured Pruning):在更高的结构级别(如卷积核、神经元、层或通道)上进行剪枝。

这两种剪枝方法各有优缺点,非结构化剪枝能更精细地削减模型大小,但结构化剪枝在实际加速中更有效,因为它能更好地与硬件优化配合。

1. 非结构化剪枝

非结构化剪枝是在个别权重上进行剪枝,将某些较小或对模型性能贡献较小的权重设为零,直接删除这些冗余权重。

方法:
  • 权重剪枝:这是最基础的非结构化剪枝方法。其流程如下:
    1. 训练模型:首先训练出一个完整的模型。
    2. 评估权重重要性:通过某些标准(如绝对值的大小)来评估每个权重的重要性。通常认为权重值较小的权重对模型输出的影响较小。
    3. 剪枝:将不重要的权重(例如小于某个阈值的权重)设为0,或完全删除这些权重。
    4. 微调模型:剪枝后,模型会丢失部分性能,通常需要对剪枝后的模型进行再训练或微调,以恢复其性能。
优缺点:
  • 优点:非结构化剪枝在理论上可以更精确地减小模型的规模,因为它只删除个别无用的权重。
  • 缺点:由于硬件对稀疏矩阵操作的优化不够好,非结构化剪枝虽然能减少模型参数量,但对推理速度的提升有限。

2. 结构化剪枝

结构化剪枝是在更高的网络结构层次上进行剪枝,例如剪掉整个神经元、卷积核、通道、层等。这种剪枝方法更适合实际部署时加速模型推理。

方法:
  • 卷积核剪枝:将整个卷积核删除。如果一个卷积核输出的特征图对于后续的推理不重要,整个卷积核可以被剪枝掉。这能够显著减少卷积层的计算开销。

  • 通道剪枝(Channel Pruning):这种方法删除卷积层输出的某些通道。它是卷积核剪枝的扩展,减少卷积操作的整体规模,从而减少计算量。

  • 神经元剪枝(Neuron Pruning):在全连接层中,剪掉不重要的神经元。例如,如果某个神经元的权重对输出影响很小,可以完全移除该神经元。

  • 层剪枝(Layer Pruning):在某些情况下,可以通过剪掉整个层来简化网络结构。如果某些层对最终输出的贡献非常小,可能通过删除这些层来减少模型的计算开销。

流程:
  1. 训练完整模型:和非结构化剪枝一样,首先需要训练出一个完整的模型。
  2. 评估结构重要性:根据某些标准(如权重的L1范数、激活的响应值等),评估整个卷积核、通道或神经元的重要性。
  3. 剪枝:将不重要的卷积核、通道、神经元或层剪除掉。
  4. 微调:剪枝后,通常模型性能会下降,需要进行再训练以恢复模型的性能。
优缺点:
  • 优点:结构化剪枝能够显著减少计算量和存储量,并且在推理时对硬件更友好,能带来实际的加速效果。
  • 缺点:剪枝后的模型通常比非结构化剪枝更难恢复性能,因为删除的是更大、更重要的结构单位。

3. 剪枝的评估方法

剪枝的关键在于如何评估权重、神经元或通道的重要性,常见的评估标准包括:

  • L1或L2范数:通过计算每个权重或神经元的L1或L2范数,较小的范数表明其对输出贡献较小。
  • 梯度信息:通过梯度值的大小来评估某个权重或神经元的重要性,梯度较小的权重可以认为在反向传播中贡献较小,适合剪枝。
  • 输出的稀疏性:如果某些神经元或通道的输出大部分时间都接近0,可以认为它们不重要,可以剪除。

4. 动态剪枝与静态剪枝

  • 静态剪枝:在训练结束后进行一次性剪枝。模型一旦剪枝,结构将不会再发生变化。
  • 动态剪枝:在训练过程中逐步进行剪枝和调整。比如训练几轮后进行剪枝,再继续训练,反复进行。这种方法能更好地平衡模型的性能和压缩比。

5. 剪枝后的再训练

不管是非结构化剪枝还是结构化剪枝,剪枝后模型性能通常都会有所下降。为了恢复性能,必须对剪枝后的模型进行微调或再训练。再训练的目标是让剩余的权重或神经元重新调整参数,以弥补被剪掉部分带来的损失。

常见剪枝应用案例

  • ResNet剪枝:经典的ResNet网络常常通过剪掉不重要的卷积核和通道,压缩网络大小,同时维持性能。

  • MobileNet剪枝:MobileNet等轻量化网络本身已经进行过结构优化,但在资源受限的情况下,进一步剪枝可以使其在移动设备上运行更加高效。

总结

  • 非结构化剪枝 通过剪除个别权重实现模型压缩,但硬件加速效果有限。
  • 结构化剪枝 在更高层次(如通道、卷积核或神经元)上进行剪枝,能带来实际推理加速效果,适合部署在硬件上。
  • 剪枝后的模型通常需要通过再训练或微调恢复性能。

剪枝是压缩模型的重要手段之一,它可以大幅减少模型的计算量和参数量,使得复杂的深度学习模型能够在资源有限的设备上高效运行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值