简介
随着语音助手、有声交互、AI 角色配音等场景的普及,语音大模型也正在面临一个核心瓶颈:响应速度太慢,难以实时交互。
VITA 团队开源的端到端语音模型:VITA-Audio
一个7B参数的端到端语音模型,首次生成音频仅需53毫秒,速度比同级别模型快3-5倍!
优势
• 超低延迟:首次生成延迟仅 53ms,比同类 7B 语音模型快 3–5 倍。
• 首次前向传播生成:Audio Token Chunk不再自回归迭代,直接生成可解码音频 token。
• 多模态语音能力:**支持语音识别(ASR)、语音合成(TTS)、语音问答(AQA)**等任务。
• 端到端架构:无需多阶段预处理,直接“一条龙”,既快又稳。
技术解析
传统语音模型如 Whisper、XTTS、NaturalSpeech 2 等,多采用:
• 自回归机制 → 每个音频 token 逐步生成
• 嵌套编码器+解码器结构 → 多阶段运算
VITA-Audio 创新之处:
• Chunk-wise 预测架构 → 第一次推理就生成一整块 audio token,可解码为首段语音
• Token 预填充机制 → 模型预热处理部分历史 token,快速推理当前 chunk
• 解码优化 → 减少音频合成过程的重建步骤这使得整个模型能够在输入响应后毫秒级输出第一帧语音,真正实现对话场景“边听边说”。
安装部署
docker
docker pull shenyunhang/pytorch:24.11-py3_2024-1224
源码
git clone https://github.com/VITA-MLLM/VITA-Audio.git
cd VITA-Audio
pip install -r requirements_ds_gpu.txt
pip install -e .
模型权重,需要下载三个文件:VITA-Audio模型权重、音频编码器和解码器权重。去Hugging Face或官方链接搞定,配置好路径就行。
开源
GitHub 开源地址:https://github.com/VITA-MLLM/VITA-Audio