【大模型】大模型训练知识——偏好对齐

偏好对齐(Preference Alignment)是一种用于优化语言模型的方法,目的是让模型的输出更符合人类的偏好和价值观。它通过直接或间接利用人类的反馈来调整模型的行为,使其生成更高质量、更安全、更符合人类期望的内容。以下是五种常见的偏好对齐训练模式的介绍:

1. KTO(Kahneman-Tversky Optimization)

KTO是一种基于前景理论的优化方法,通过修改效用函数来推导损失函数。它避免了DPO中需要正负样本对的问题,只需要二元反馈(如点赞或点踩),从而简化了数据收集过程。KTO将损失函数拆分为正负两部分,分别处理正样本和负样本。

KTO 数据集格式需要包含人类指令、输入、模型输出以及一个布尔标签(kto_tag),表示该输出是否被接受。数据集通常以 JSON 格式存储。
数据集格式示例:

{
  {
    "instruction": "人类指令",
    "input": "人类输入",
    "output": "模型回答",
    "kto_tag": true  // 表示该回答被接受
  },
  {
    "instruction": "人类指令",
    "input": "人类输入",
    "output": "模型回答",
    "kto_tag": false  // 表示该回答不被接受
  }
}

2. DPO(Direct Preference Optimization)

DPO是一种直接偏好优化方法,通过构造偏好数据集进行优化。它不需要单独训练奖励模型,而是直接在模型的输出上优化人类偏好的结果。DPO在训练过程中使用成对的偏好数据(如“好的回答”和“不好的回答”),并通过对比学习的方式优化模型。

DPO 数据集格式需要包含人类指令、输入、优质回答(chosen)和劣质回答(rejected)。数据集通常以 JSON 格式存储。

{
  {
    "instruction": "人类指令",
    "input": "人类输入",
    "chosen": "优质回答",
    "rejected": "劣质回答"
  }
}

3. SimPO(Simple Preference Optimization)

SimPO是一种简单偏好优化方法,旨在消除对参考模型的需求。它通过定义损失函数和采用长度归一化策略,直接优化模型的输出,同时控制生成内容的长度。SimPO在性能上优于DPO及其变体。

SimPO 数据集格式与 DPO 类似,也需要包含人类指令、输入、优质回答和劣质回答。数据集通常以 JSON 格式存储。

{
  {
    "instruction": "人类指令",
    "input": "人类输入",
    "chosen": "优质回答",
    "rejected": "劣质回答"
  }
}
# 4. RLHF(Reinforcement Learning from Human Feedback)奖励模型
RLHF是一种基于强化学习的方法,通过人类反馈训练奖励模型(Reward Model),然后使用PPO(Proximal Policy Optimization)等算法优化模型。这种方法虽然有效,但训练成本较高,且优化过程较为复杂。

RLHF 数据集格式需要包含人类指令、输入、优质回答和劣质回答,用于训练奖励模型。数据集通常以 JSON 格式存储。
# 5. ORPO(Odds Ratio Preference Optimization)
ORPO是一种将监督微调(SFT)和偏好对齐集成到单一步骤中的方法。它通过定义相关函数推导损失函数,避免了传统方法中需要单独训练奖励模型的问题。ORPO在某些数据集上表现出色,但也有一定的局限性。

ORPO 数据集格式也类似于 DPO 和 SimPO,需要包含人类指令、输入、优质回答和劣质回答。

# 总结
这些偏好对齐方法各有优缺点,选择哪种方法取决于具体的应用场景和资源限制。例如,KTO和SimPO更适合资源有限的场景,而RLHF和DPO则在性能上可能更优,但需要更多的计算资源和标注数据。

KTO:需要布尔标签(kto_tag)来表示输出是否被接受。
DPO、SimPO、RLHF、ORPO:都需要包含优质回答(chosen)和劣质回答(rejected)。
数据集通常以 JSON 格式存储,包含人类指令、输入、优质回答和劣质回答。
### 大模型算法对齐技术最新进展 大语言模型(LLM)的对齐是指使这些模型的行为更符合人类意图和技术期望的过程。这一领域已经取得了重要进展,特别是在强化学习与人类反馈相结合的方法上。 #### 强化学习与人类反馈(RLHF) 一种有效的对齐策略是利用强化学习与人类反馈(RLHF)[^3]。这种方法允许通过收集来自真实用户的偏好数据来训练模型,从而更好地调整其行为以满足特定需求。研究表明,这种基于反馈的学习方式能够有效减少有害输出并提高对话质量(Ouyang2022)。 #### 归纳头机制 除了传统的参数微调外,研究人员还探索了其他形式的知识注入途径,比如归纳头(Induction Head),这是一种特殊的神经网络结构设计用来捕捉输入序列中的模式变化(Olsson2022)[^3]。该组件可以帮助改善模型对于复杂任务的理解能力,进而促进更好的对齐效果。 #### 偏好对齐方法应用于多模态场景 针对多模态大模型中存在的“幻觉”问题——即生成的内容有时会偏离实际观察到的数据分布——研究者们引入了偏好对齐的概念[^4]。此方法试图通过对不同类型的媒体内容建立关联性的理解,使得机器产生的解释更加贴近真实的感知体验。尽管如此,当前仍需进一步探究哪些具体的因素最有助于提升此类系统的准确性。 ```python # 示例代码展示如何使用Hugging Face Transformers库加载预训练好的对齐后的BERT模型 from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) print(output.logits) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值