1.了解电商行业
学习电商项目,自然要先了解这个行业,所以我们首先来聊聊电商行业
1.1.项目分类
主要从需求方、盈利模式、技术侧重点这三个方面来看它们的不同
1.1.1.传统项目
各种企业里面用的管理系统(ERP、HR、OA、CRM、物流管理系统。。。。。。。)
-
需求方:公司、企业内部
-
盈利模式:项目本身卖钱
-
技术侧重点:业务功能
1.1.2.互联网项目
门户网站、电商网站:baidu.com、qq.com、taobao.com、jd.com ......
-
需求方:广大用户群体
-
盈利模式:虚拟币、增值服务、广告收益......
-
技术侧重点:网站性能、业务功能
而我们今天要聊的就是互联网项目中的重要角色:电商
1.2.电商行业的发展
1.2.1.钱景
近年来,中国的电子商务快速发展,交易额连创新高,电子商务在各领域的应用不断拓展和深化、相关服务业蓬勃发展、支撑体系不断健全完善、创新的动力和能力不断增强。电子商务正在与实体经济深度融合,进入规模性发展阶段,对经济社会生活的影响不断增大,正成为我国经济发展的新引擎。
中国电子商务研究中心数据显示,截止到 2012 年底,中国电子商务市场交易规模达 7.85万亿人民币,同比增长 30.83%。其中,B2B 电子商务交易额达 6.25 万亿,同比增长 27%。而 2011 年全年,中国电子商务市场交易额达 6 万亿人民币,同比增长 33%,占 GDP 比重上升到 13%;2012 年,电子商务占 GDP 的比重已经高达 15%。
1.2.2.数据
来看看双十一的成交数据:
2016双11开场30分钟,创造每秒交易峰值17.5万笔,每秒支付峰值12万笔的新纪录。菜鸟单日物流订单量超过4.67亿,创历史新高。
1.2.3.技术特点
从上面的数据我们不仅要看到钱,更要看到背后的技术实力。正是得益于电商行业的高强度并发压力,促使了BAT等巨头们的技术进步。电商行业有些什么特点呢?
-
技术范围广
-
技术新
-
高并发(分布式、静态化技术、缓存技术、异步并发、池化、队列)
-
高可用(集群、负载均衡、限流、降级、熔断)
-
数据量大
-
业务复杂
-
数据安全
1.3.常见电商模式
电商行业的一些常见模式:
-
B2C:商家对个人,如:亚马逊、当当等
-
C2C平台:个人对个人,如:闲鱼、拍拍网、ebay
-
B2B平台:商家对商家,如:阿里巴巴、八方资源网等
-
O2O:线上和线下结合,如:饿了么、电影票、团购等
-
P2P:在线金融,贷款,如:网贷之家、人人聚财等。
-
B2C平台:天猫、京东、一号店等
1.4.一些专业术语
-
SaaS:软件即服务
-
SOA:面向服务
-
RPC:远程过程调用
-
RMI:远程方法调用
-
PV:(page view),即页面浏览量;
用户每1次对网站中的每个网页访问均被记录1次。用户对同一页面的多次访问,访问量累计
-
UV:(unique visitor),独立访客
指访问某个站点或点击某条新闻的不同IP地址的人数。在同一天内,uv只记录第一次进入网站的具有独立IP的访问者,在同一天内再次访问该网站则不计数。
-
PV与带宽:
-
计算带宽大小需要关注两个指标:峰值流量和页面的平均大小。
-
计算公式是:网站带宽= ( PV * 平均页面大小(单位MB)* 8 )/统计时间(换算到秒)
-
为什么要乘以8?
-
网站大小为单位是字节(Byte),而计算带宽的单位是bit,1Byte=8bit
-
-
这个计算的是平均带宽,高峰期还需要扩大一定倍数
-
-
PV、QPS、并发
-
QPS:每秒处理的请求数量。
-
比如你的程序处理一个请求平均需要0.1S,那么1秒就可以处理10个请求。QPS自然就是10,多线程情况下,这个数字可能就会有所增加。
-
-
由PV和QPS如何需要部署的服务器数量?
-
根据二八原则,80%的请求集中在20%的时间来计算峰值压力:
-
(每日PV * 80%) / (3600s * 24 * 20%) * 每个页面的请求数 = 每个页面每秒的请求数量
-
然后除以服务器的QPS值,即可计算得出需要部署的服务器数量
-
-