MK算法bfs优化模板O(n3)

这篇博客探讨了如何运用KM算法(Kuhn-Munkres算法,又称匈牙利算法)来解决二分图的最大匹配问题,进而找到图中的最小权值。作者首先展示了KM算法的实现细节,包括松弛操作和增广路径搜索。接着,通过一个实例解释了算法的运行过程,最终求得图的最小权值。这个算法在图论和优化问题中有广泛应用。
摘要由CSDN通过智能技术生成

#pragma warning(disable:4996)
#include<iostream>
#include<string.h>
#include<queue>
#include<stack>
#include<math.h>
#include<map>
#include<set>
#include<algorithm>
#include<sstream>
#include<vector>
#include<ctype.h>
#include<list>
//#include <unordered_map>
#include<deque>
#include<functional>
using namespace std;
#define ll long long
const int N = 4e2 + 10;
const int INF = 0x3f3f3f3f;

int n;
int nx, ny;//两边的点数
ll g[N][N];//二分图描述
ll linker[N], lx[N], ly[N];//y 中各点匹配状态,x,y 中的点标号
ll slack[N];
bool visx[N], visy[N];
int pre[N];

void bfs(int k) {
    int x, y = 0, yy = 0;
    ll delta;
    memset(pre, 0, sizeof pre);
    for (int i = 1; i <= ny; i++)slack[i] = 1e13;
    linker[y] = (ll)k;
    while (1) {
        x = linker[y]; delta = 1e13; visy[y] = true;
        for (int i = 1; i <= ny; i++) {
            if (!visy[i]) {
                if (slack[i] > lx[x] + ly[i] - g[x][i]) {
                    slack[i] = lx[x] + ly[i] - g[x][i];
                    pre[i] = y;
                }
                if (slack[i] < delta)delta = slack[i], yy = i;
            }
        }
        for (int i = 0; i <= ny; i++) {
            if (visy[i]) {
                lx[linker[i]] -= delta;
                ly[i] += delta;
            }
            else slack[i] -= delta;
        }
        y = yy;
        if (linker[y] == -1)break;
    }
    while (y) {
        linker[y] = linker[pre[y]];
        y = pre[y];
    }
}
ll KM() {
    memset(linker, -1, sizeof linker);
    memset(lx, 0, sizeof lx);
    memset(ly, 0, sizeof ly);
    for (int i = 1; i <= ny; i++) {
        memset(visy, false, sizeof visy);
        bfs(i);
    }
    ll res = 0;
    for (int i = 1; i <= ny; i++)
        if (linker[i] != -1)
            res += g[linker[i]][i];
    return res;

}
int main(void)
{
	long long ans = 0;
	scanf("%d", &n);
    ny = nx = n;
	/*得到g[N][N]*/
	/*要求最小权值,把g[N][N]变成负的.*/
	printf("%lld\n", KM());  //最小权值:-KM().
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值