[LeetCode解题] -- 动态规划二 [ 子串、子序列问题 ]

子序列 vs 子串、子数组、子区间

子序列 : 可以不连续
子串、子数组、子区间 : 必须连续

 

1.最大连续子序[ 子串 ]和

53. 最大子序和

[ 题目描述 ]

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

[ 解题思路 ]

 最大切片 greatest slice

dp[i] 是以nums[i]结尾的最大连续子序列和

状态转移方程
	如果dp[i-1]<=0,那么dp[i]=num[i]
	如果dp[i-1]>0, 那么dp[i]=dp[i-1]+num[i]
初始状态
	dp[0]的值是nums[0]
最终的解
	最大连续子序和是所有dp[i]中的最大值max{dp[i]}		0 <= i <= nums.length

dp[i] 是以nums[i]结尾的最大连续子序列和
    1.max=dp[0]=nums[0]
    2.前1个 dp[i-1] 和0比较; <=0 dp[i] = nums[i],>0 dp[i] = dp[i-1] + nums[i];
    3.max=max(dp[i],max)

 

[ 代码实现 ]

	// _53_MaxSubArray_最大子序和
	static int maxSubArray1(int[] nums) {
		if (nums == null || nums.length == 0)
			return 0;
		int[] dp = new int[nums.length];
		//dp[0] = nums[0];
		int max = dp[0] = nums[0];
		for (int i = 1; i < dp.length; i++) {
			int prev = dp[i - 1];
			if (prev <= 0) {	// dp[i-1] 以i-1位置结尾的最大连续子序和是负数,拖后腿
				dp[i] = nums[i];
			} else {
				dp[i] = prev + nums[i];
			}
			max = Math.max(dp[i], max);
		}
		return max;
	}

[ 性能分析 ]

时间复杂度 n
空间复杂度 n

2.最长上升子序列

300. 最长上升子序列

[ 题目描述 ]

给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4 
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明:

可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?

1.max=dp[0]=1
2.当前dp[i]=1; 遍历j<=i得到前j-1个, 如果num[i] <= num[j] continue , dp[i]=max(dp(i),dp(j)+1)
3.max=max(dp[i],max)

[ 解题思路 ]

dp[i] 以 nums[i]结尾的最长上升子序列长度

1.状态初始值
	dp[0]=1
	所有的dp[i]都初始化为1

2.遍历dp  0 =< j <i
	2.1当num[i]>num[j]
		nums[i]可以拼在num[j]后面,形成一个比dp[j]更长的上升子序列,长度为dp[j]+1
		dp[i] = max{ dp[i],dp[j]+1 }
	2.2当num[i]<num[j]
		num[i]不能拼在num[j]后面,跳过此次遍历continue
3.max=max(dp[i],max)

问题的难点在于理解 dp[i] = Math.max(dp[i], dp[j] + 1),如下搞明白了nums数组和dp数组,问题迎刃而解

为什么要有 dp[i] = Math.max(dp[i], dp[j] + 1) ?

dp[i] 以 nums[i]结尾的最长上升子序列长度

    nums [0,1,0,3,2,3,2]
     dp     [1,2,1,3,3,4,3]

[ 代码实现 ]

	static int lengthOfLIS1_(int[] nums) {
		if (nums == null || nums.length == 0)
			return 0;
		int[] dp = new int[nums.length];
		int max = dp[0] = 1;
		for (int i = 1; i < dp.length; i++) {
			dp[i] = 1;
			for (int j = 0; j < i; j++) {	// 获得dp[i]
				if (nums[i] <= nums[j])
					continue;
				dp[i] = Math.max(dp[i], dp[j] + 1);
			}
			max = Math.max(dp[i], max);
		}
		return max;
	}

[ 性能分析 ]

时间复杂度 n2
空间复杂度 n


3.最长公共子序列

1143. 最长公共子序列

[ 题目描述 ]

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

 

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace",它的长度为 3。
示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc",它的长度为 3。
示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0。
 

提示:

1 <= text1.length <= 1000
1 <= text2.length <= 1000
输入的字符串只含有小写英文字符。

[ 解题思路 ]

假设dp(i,j)是 (nums1前i个元素)与(nums2前j个元素)的最长公共子序列长度。

1.假设2个序列分别是nums1 nums2
	i [0,nums1.length]
	j [0,nums2.length]
2.假设dp(i,j)是 (nums1前i个元素)与(nums2前j个元素)的最长公共子序列长度。
				# dp(i,j)是以num1[i-1],nums2[j-1]结尾的最长公共子串的长度。或者说是前i-1 j-1个元素最长公共子序列
	dp(i,0)、dp(0,j)初始值均为0
	如果nums1[i=1]=nums2[j-1],那么dp(i,j)=dp(i-1,j-1)+1
	如果nums1[i=1]!=nums2[j-1],那么dp(i,j)=max{ dp(i-1),(j-1) }

 

[ 代码实现 ]

	static int lcs2(int[] nums1, int[] nums2) {
		if (nums1 == null || nums1.length == 0)
			return 0;
		if (nums2 == null || nums2.length == 0)
			return 0;

		int[][] dp = new int[nums1.length + 1][nums2.length + 1];
		// i=0 或者j=0 时,dp=0。故,从1开始计算就好
		for (int row = 1; row <= nums1.length; row++) {	// 注意:此处是 <=
			for (int col = 1; col <= nums2.length; col++) {
				if (nums1[row - 1] == nums2[col - 1]) {	//相等  左上
					dp[row][col] = dp[row - 1][col - 1] + 1;
				} else {							//不相等 上、左
					dp[row][col] = Math.max(dp[row - 1][col], dp[row][col - 1]);
				}
			}
		}
		return dp[nums1.length][nums2.length];	// dp[i][j] nums1的前i个元素,即前nums1.length个元素。故dp的长度为nums1.length+1
	}

[ 性能分析 ]

空间换时间,多了空间的消耗
空间复杂度 m*n
时间复杂度 m*n

4.最长公共子串

[ 题目描述 ]

最长公共子序列的变形

[ 解题思路 ]

假设dp(i,j)是以str[i-1],str2[j-1]结尾的最长公共子串的长度

1.假设2个字符串分别是str1 str2
	i [1,str1.length]
	j [j,str2.length]
2.假设dp(i,j)是以str[i-1],str2[j-1]结尾的最长公共子串的长度
	dp(i,0) dp(0,j)初始值为0
	如果str1[i-1]=str2[j-1],那么dp(i,j)=dp(i-1,j-1)+1
	如果str1[i-1]!=str2[j-1],那么dp(i,j)=0
3.最长公共子串的长度是所有dp(i,j)中的最大值 max{ dp(i,j) }

[ 代码实现 ]

	// LCSubstring_最长公共子串  连续
	static int lcs1(String str1, String str2) {
		if (str1 == null || str2 == null)
			return 0;
		char[] chars1 = str1.toCharArray();
		if (chars1.length == 0)
			return 0;
		char[] chars2 = str2.toCharArray();
		if (chars2.length == 0)
			return 0;
		int[][] dp = new int[chars1.length + 1][chars2.length + 1];
		int max = 0;
		for (int i = 1; i <= chars1.length; i++) {
			for (int j = 1; j <= chars2.length; j++) {
				if (chars1[i - 1] != chars2[j - 1])
					continue;						// 数组默认就是0
				dp[i][j] = dp[i - 1][j - 1] + 1;
				max = Math.max(dp[i][j], max);
			}
		}
		return max;
	}

[ 性能分析 ]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值