图像
夏目里奇
这个作者很懒,什么都没留下…
展开
-
generalized focal loss V1, V2分析与使用
希望通过本文能了解到:general focal loss的背景和原理;代码的实现,如何加在自己的模型中;general focal loss v1- 2020.6.8general focal loss v2- 2020.11.251.背景v1主要解决:大多数目标检测模型中,要同时预测目标置信度scoreobjscore_{obj}scoreobj和类别置信度scorei(i=1...n)score_{i}(i =1...n)scorei(i=1...n),训练的时候分开单独训原创 2020-12-27 21:54:00 · 3021 阅读 · 4 评论 -
清晰易懂的卡尔曼滤波
卡尔曼滤波用于在变化的动态系统中,由当前状态和观测值相融合估计下一个状态。这是一个迭代的过程,也是一个数据融合的过程。step 1假设有一个系统,有状态转移方程:xk=Ax‾k−1+Buk+wk(1)x_{k}=A \overline x_{k-1} + Bu_{k} + w_{k} \tag{1}xk=Axk−1+Buk+wk(1)其中x‾k−1\overline x_{k-1}xk−1是上一个状态值,xkx_{k}xk是系统输出,uku_{k}uk是系统控制量,wkw_{k}w原创 2020-08-04 22:24:53 · 407 阅读 · 0 评论 -
相机坐标系vs世界坐标系vs像素坐标系
趁现在似乎比较清晰,赶紧写一下1.概念世界坐标系物体再空间中的坐标,说白了就是除了相机坐标系外(其实相等也没关系)的另一个坐标系,可以以空间任意一个点建立坐标系相机坐标系相机的成像是位于感光元件上,可以想象再往里存在一个相机的原点,以它建立相机坐标系像素坐标系把相机坐标系的坐标做一次变换,得到常用的平面像素坐标(此时z=1)2.空间变换想象空间存在一个点P,要把它转换到相机的画面中,也就是3维坐标变到2维坐标(伪);空间坐标系下P点坐标:相机坐标系内P点坐原创 2020-05-31 12:04:48 · 677 阅读 · 0 评论