Piggy-Bank(完全背包)

原题链接
Piggy-Bank
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 21205 Accepted Submission(s): 10787

Problem Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it’s weight in grams.

Output

Print exactly one line of output for each test case. The line must contain the sentence “The minimum amount of money in the piggy-bank is X.” where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line “This is impossible.”.

Sample Input

3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4

Sample Output

The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.

完全背包的原型问题就是说有n种重量和价值分别为wi和vi的物品,现从中挑出总重量不超过W的物品, 每种物品可以挑选任意多件

//这就是一个简单的完全背包的模板
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cstdio>
#include <string>
using namespace std;
/** Constant List .. **/
const int MOD = int(1e9) + 7;
//int MOD = 99990001;
const int INF = 0x3f3f3f3f;
//const LL INFF = 0x3f3f3f3f3f3f3f3fLL;
//const DB EPS = 1e-9;
//const DB OO = 1e20;
//const DB PI = acos(-1.0); //M_PI;
const int fx[] = {-1, 1, 0, 0};
const int fy[] = {0, 0, -1, 1};
const int maxn=10000 + 10;
int dp[maxn];
int main(){
        int T;
        scanf("%d",&T);
        while(T--){
                memset(dp,0,sizeof(dp));
                int v[maxn],w[maxn];
                int n,W;
                cin >> n >> W;
                for(int i=0;i<n;i++)
                        scanf("%d%d",&w[i],&v[i]);
                for(int i=0;i<n;i++){//这样j的列举方法刚好是和01背包中j的列举方法是相反的
                        for(int j=w[i];j<=W;j++){//这里来列举所有的价值
                                dp[j]=max(dp[j],dp[j-w[i]] + v[i]);
                        }
                }
                cout<<dp[W]<<endl;
        }
        return 0;
}

这里发现他的写法与01背包的写法不一样的地方就在于它的j的循环是从w[i]开始到W,但是01背包是从W到w[i]的。
如果上面的写法不容易理解的话,下面有一种便于理解的方法。

#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cstdio>
#include <string>
using namespace std;
/** Constant List .. **/
const int MOD = int(1e9) + 7;
//int MOD = 99990001;
const int INF = 0x3f3f3f3f;
//const LL INFF = 0x3f3f3f3f3f3f3f3fLL;
//const DB EPS = 1e-9;
//const DB OO = 1e20;
//const DB PI = acos(-1.0); //M_PI;
const int fx[] = {-1, 1, 0, 0};
const int fy[] = {0, 0, -1, 1};
const int maxn=10000 + 10;
int dp[510][maxn];//dp[i+1][j]表示从前i种物品中挑选总重量不超过j时总价值的最大值(在这个题中是最小值)
int main(){
        int T;
        scanf("%d",&T);
        while(T--){
                for(int i=0;i<510;i++)
                for(int j=0;j<maxn;j++)
                        dp[i][j]=INF;//本题因为是求最小值所以需要初始化为INF
                dp[0][0]=0;//但是第一位明显还是要从0开始的
                int t1,t2,n;
                scanf("%d%d",&t1,&t2);
                int W=t2-t1;
                scanf("%d",&n);
                int v[510],w[510];
                for(int i=0;i<n;i++)
                        scanf("%d%d",&v[i],&w[i]);
                for(int i=0;i<n;i++){//这里的j是从0开始列举的,这样就保证了不像01背包一样每个物品只能选一次
                        for(int j=0;j<=W;j++){//和01背包不一样这里来列举所有的价值,而01背包列举的是所有的重量下的最大(在本题中是最小)价值
                                if(j<w[i]){//总价值还不够的情况下当然是延续了
                                        dp[i+1][j]=dp[i][j];
                                }
                                else{
                                        dp[i+1][j]=min(dp[i][j],dp[i+1][j-w[i]]+v[i]);
                                }
                        }
                }
                int res=INF;
                bool flag=false;
                for(int i=0;i<510;i++)
                        if(dp[i][W]!=INF){
                                flag=true;
                                res=min(res,dp[i][W]);
                        }
                if(flag)//如果没有一个刚好满足这个总重量的话,说明无论怎么装都是不可能出现这个重量的
                        printf("The minimum amount of money in the piggy-bank is %d.\n",res);
                else
                        printf("This is impossible.\n");
        }
        return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

门豪杰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值