小Q定义了一种数列称为翻转数列:
给定整数n和m, 满足n能被2m整除。对于一串连续递增整数数列1, 2, 3, 4…, 每隔m个符号翻转一次, 最初符号为’-’;。
例如n = 8, m = 2, 数列就是: -1, -2, +3, +4, -5, -6, +7, +8.
而n = 4, m = 1, 数列就是: -1, +2, -3, + 4.
小Q现在希望你能帮他算算前n项和为多少。
输入描述:
输入包括两个整数n和m(2 <= n <= 109, 1 <= m), 并且满足n能被2m整除。
输出描述:
输出一个整数, 表示前n项和。
输入例子1:
8 2
输出例子1:
8
这个题一开始用list来做,然后依次相加,然后就超时了,并且就只有30%的测试案例能通过:
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
List<Long> list = new ArrayList<Long>();
Scanner sc = new Scanner(System.in);
int flag = -1;
Long x = 1L;
Long n = sc.nextLong();
Long m = sc.nextLong();
if ((n >= 2 && n <= 1000000000) && (1 <= m) && (n % (2 * m) == 0)) {
// 循环n次进行赋值
for (int i = 1; i <= n; i++) {
// 进行标志位判断,flag=-1,为负数,flag=1,为正数
if (flag == -1) {
list.add(-x);
x++;
}
if (flag == 1) {
list.add(x);
x++;
}
// 进行标志位改变
if (i % m == 0) {
flag = -flag;
}
}
Long sum = total(list);
System.out.println(sum);
}
}
public static Long total(List<Long> list) {
Long sum = 0L;
for (int i = 0; i < list.size(); i++) {
sum += list.get(i);
}
return sum;
}
}
百度之后获得以下算法:
我们先来分析一下数组,递增的,连续.每过m个数,符号翻转一次,前n项翻转 n/m 次 即是说我们把n分成了n/m段
仔细分析每次翻转,我们可以发现 我们可以将"连续的-"号和"+"号的二段合并一下求值 那么前n项就被分成了n/2m
那么我们来看一下 一段"连续的-"号和"+" 的和是多少 拿第一个加号值加上第一个减号值,差值刚好是m,在这一段数字中 恰好有m个m
以 n = 8, m = 2, 数列是: -1, -2, +3, +4, -5, -6, +7, +8.为例
将数组看成-1, -2, +3, +4 和-5, -6, +7, +8组合而成
前一部分3-1+4-2=4
后一部分7-5+8-6=4
(8/(2*2))*2*2 = 8
于是得出公式
前n项的和为 (n/2m)*mm
代码实现:
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
Long n = sc.nextLong();
Long m = sc.nextLong();
if ((n >= 2 && n <= 1000000000) && (1 <= m) && (n % (2 * m) == 0)) {
Long sum = (n / (2 * m)) * m * m;
System.out.println(sum);
}
}
}