子图模式

本文解析了Xifeng Yan和Jiawei Han的gSpan算法,该算法用于挖掘图数据库中的频繁连通子图。gSpan通过独特的最小DFS码避免了昂贵的子图同构测试和候选集生成,从而高效地发现频繁子图。实验在化学化合物数据集上展示了算法的效果。
摘要由CSDN通过智能技术生成

本文主要是对Xifeng Yan和Jiawei Han 发表于2002年的论文《gSpan:Graph-Based Substructure Pattern Mining》的解读

子图模式:基于图的数据挖掘,挖掘图数据库中的频繁子结构

Introduction


2000,Inokuchi结合Apriori算法和数学图论知识,提出了AGM算法
2001,Kuramochi对AGM进行了修改并引入了一些剪枝策率,提出FSG算法
2002,Jiawei Han等人提出了gSpan算法,有效的挖掘出图数据集中的频繁连通子图


注:
连通图:无向图G,图中任意两个节点都存在路径可达,则图G称为连通图

Applications of Graph Patterns
图片名称

节点表示个体,边表示个体之间的亲密属性

频繁子图挖掘的核心是图的同构测试

The Apriori-like algorithms suffer two additional cost:
(1)Costly subgraph isomorphism test
(2)Costly candidate generation

gSpan
不产生候选集,gSpan能够在图数据库中建立一个新的字典排序并且为每一个图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值