- 博客(11)
- 收藏
- 关注
原创 形象理解Swap函数中传参前带的&
函数只交换了它们值的副本”这句话强调了编程中的一个关键概念:如果不使用引用(或某些语言中的指针),函数就不能修改原始变量——它只能处理临时的重复变量。“函数只交换了它们值的副本”意味着函数交换了变量的临时副本的值,但是函数外部的原始变量保持不变,因为函数不能访问真正的变量——只能访问它们的副本。但是原始的盒子(A和B)仍然有它们的原始值(5和10),因为这个函数只对影印件起作用,对真正的盒子不起作用。你想要交换它们的内容。在函数内部,它交换了两个副本,所以5的副本变成了10,10的副本变成了5。
2025-03-04 17:27:57
206
原创 【论文解析】Fast Adaptive Task Offloading in Edge Computing Based on Meta Reinforcement Learning
多接入边缘计算(multi -access edge computing, MEC)旨在将云服务扩展到网络边缘,以减少网络流量和服务延迟。MEC中的一个基本问题是如何有效地将移动应用程序的异构任务从用户设备(UE)卸载到MEC主机。最近,人们提出了许多基于深度强化学习(DRL)的方法,通过与由UE、无线信道和MEC主机组成的MEC环境交互来学习卸载策略。然而,这些方法对新环境的适应性较弱,因为它们的样本效率较低,并且需要充分的再训练来学习新环境的更新策略。为了克服这一缺点,我们提出了一种基于元强化学习。
2024-02-18 14:41:31
1157
1
原创 【论文解析】A DRL-Based Service Offloading Approach UsingDAG for Edge Computational Orchestration
边缘基础设施和工业4.0所需的服务由具有不同计算能力的边缘服务器(ESs)提供,以基于租赁价格的方法运行社交应用的工作负载。社交物联网(SIoT)应用的使用日益增加,这使得社交平台非常受欢迎,同时需要一个有效的计算系统来实现高服务可靠性。在这方面,根据有向无环图(DAG)在时间槽内进行高要求计算社交服务请求(SRs)的卸载是一个NP完全问题。大多数最新方法关注网络的能源保存,但忽视了计算和资源共享过程中的资源共享成本和动态子服务执行时间(SET)。
2024-02-15 16:35:03
1036
1
原创 【论文解析】Lyapunov-Guided DRL for Stable Online Computation Offloading inMobile-Edge Computing Networks
机会计算卸载是动态边缘环境下提高移动边缘计算(MEC)网络计算性能的有效方法。在本文中,考虑了一个具有时变无线信道和随机用户任务数据在连续时间框架内到达的多用户MEC网络。特别是目标是设计一种在线计算卸载算法,在长期数据队列稳定性和平均功率约束下,最大限度地提高网络数据处理能力。在线算法是实用的,因为每个时间框架的决策是在不知道随机信道条件和数据到达的未来实现的假设下做出的。将该问题表述为一个多阶段随机混合整数非线性规划(MINLP)问题。
2024-02-12 18:58:05
2524
5
原创 【论文解析】A Distributed DRL Technique for Application Placement in Edge and Fog Computing Environments
雾/边缘计算是一种新的计算范式,通过将任务放置在边缘和/或云服务器上来支持资源受限的物联网(IoT)设备。最近,在雾/边缘计算环境中提出了几种基于深度强化学习(DRL)的放置技术,这些技术仅适用于集中式设置。训练性能良好的DRL代理需要大量的训练数据,而获取训练数据的成本很高。因此,这些集中式的基于DRL的技术缺乏通用性和快速适应性,因此无法有效地解决应用程序放置问题。此外,许多物联网应用被建模为具有不同拓扑结构的有向无环图(DAG)。
2024-02-12 00:22:52
1235
1
原创 【论文解析】D3PG in MEC 移动边缘计算中具有约束混合动作空间的任务划分和卸载的狄利克雷深度确定性策略梯度算法
联合优化N个物联网设备、M个边缘服务器的动态环境下的任务卸载和资源分配;将问题表述为具有约束混合动作空间的马尔可夫决策过程;建立在DDPG上的D3PG;解决多目标优化问题,最大限度处理到期前任务,最大限度降低能耗和延迟;可有效处理约束分布-连续混合动作空间;联合优化了任务划分、任务卸载和计算频率控制;针对多个联合优化问题,提出了一个可配置的优化目标,以端到端方式优化多个目标,不需要像现有方法那样进一步优化。
2023-12-01 13:03:21
800
3
原创 三、数据降维:主成分分析模型PCA
主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维技术,用于减少数据集的维度,并且保留尽可能多的原始数据信息。这些新的基称为主成分,其中第一个主成分解释了数据中最大的方差,第二个主成分解释了剩余方差中的最大部分,以此类推。这是因为PCA是基于数据的协方差矩阵计算的,需要保证所有特征具有相同的尺度,以获得准确的结果。这是因为PCA是基于数据的协方差矩阵计算的,如果特征之间的尺度差异较大,会导致主成分分析结果不准确。最后,函数返回排序后的特征值和对应的特征向量。
2023-08-05 12:44:00
1046
2
原创 二、数据变换:简单函数、标准化和特征工程
本文介绍了数据预处理中的常见技术,包括简单函数变换、标准化和特征工程。文章讨论了每种技术的作用和用法,并提供了实际案例解释。在简单函数变换方面,文章介绍了对数、指数、平方根、倒数、正切和双曲正切变换。在标准化方面,文章讨论了z-score、最小-最大、单位向量和Normalization标准化。在特征工程方面,文章介绍了分类变量处理和特征选择技术,包括独热编码、标签编码、二进制编码、相关性分析、卡方检验、岭回归和L2正则化。
2023-08-04 18:59:55
1555
2
原创 使用Docker安装ELK(Elasticsearch+Logstash+Kibana)+filebeat____基于CentOS7.9
本文基于CentOS7.9环境,使用docker搭建ELK+filebeat日志检索可视化系统。
2023-08-03 09:51:43
1726
3
原创 一、数据清洗:缺失值、异常值和重复值处理
本文介绍了Python数据预处理和清理的四个部分,包括数据加载、缺失值处理、重复值处理和异常值检测。第一部分详细介绍了如何使用Pandas库和CSV模块加载数据。第二部分说明了几种缺失值处理方法,如识别、删除和填充缺失值。第三部分介绍了如何生成、删除重复数据和删除特定列值相同的数据行。最后一部分涵盖了如何使用箱线图和3σ规则检测并移除异常值。
2023-07-23 11:05:12
4348
4
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人