使用python中的networkx来生成一个图

使用python提供的第三方的库networkx,networkx是专门用来生成图论和网络科学里面各种图及其各种计算函数的。

(a).如果已知一个图的图形,如何将其生成对应的邻接矩阵,这个在networkx里面提供了函数nx.to_numpy_matrix(G)来完成

(b).如果已知一个图的邻接矩阵,如何将其转化成对应的图形

代码如下:

# -*- coding: utf-8 -*-
"""
Created on Sun Jun 16 20:13:42 2019

@author: Administrator
"""

"""

这个函数的作用是将一个矩阵给转换成一个图,
矩阵以多维列表的形式存在,即列表的列表
此处的转换是针对无向图

根据邻接矩阵得到图之后,我们就可以调用networkx
里面的各种函数来分析图的性质,比如度分布,
平均路径程度,聚类系数等一系列图的拓扑性质

"""

import networkx as nx


def matrix_to_graph():

  G = nx.Graph()
  
  #matrix为邻接矩阵,以多维列表的形式存在
  matrix = [[0, 1, 1],[1,0,1],[1,1,0]]
  
  nodes = range(len(matrix))
  G.add_nodes_from(nodes)
 
  for i in range(len(matrix)):
    for j in range(len(matrix)):
      if(matrix[i][j] == 1):
		G.add_edge(i, j)
        
  position = nx.circular_layout(G)
  nx.draw_networkx_nodes(G,position, nodelist=nodes, node_color="r")
  nx.draw_networkx_edges(G,position)
  nx.draw_networkx_labels(G,position)
  print(nx.to_numpy_matrix(G))

matrix_to_graph()

运行结果如下:

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值