使用python提供的第三方的库networkx,networkx是专门用来生成图论和网络科学里面各种图及其各种计算函数的。
(a).如果已知一个图的图形,如何将其生成对应的邻接矩阵,这个在networkx里面提供了函数nx.to_numpy_matrix(G)来完成
(b).如果已知一个图的邻接矩阵,如何将其转化成对应的图形
代码如下:
# -*- coding: utf-8 -*-
"""
Created on Sun Jun 16 20:13:42 2019
@author: Administrator
"""
"""
这个函数的作用是将一个矩阵给转换成一个图,
矩阵以多维列表的形式存在,即列表的列表
此处的转换是针对无向图
根据邻接矩阵得到图之后,我们就可以调用networkx
里面的各种函数来分析图的性质,比如度分布,
平均路径程度,聚类系数等一系列图的拓扑性质
"""
import networkx as nx
def matrix_to_graph():
G = nx.Graph()
#matrix为邻接矩阵,以多维列表的形式存在
matrix = [[0, 1, 1],[1,0,1],[1,1,0]]
nodes = range(len(matrix))
G.add_nodes_from(nodes)
for i in range(len(matrix)):
for j in range(len(matrix)):
if(matrix[i][j] == 1):
G.add_edge(i, j)
position = nx.circular_layout(G)
nx.draw_networkx_nodes(G,position, nodelist=nodes, node_color="r")
nx.draw_networkx_edges(G,position)
nx.draw_networkx_labels(G,position)
print(nx.to_numpy_matrix(G))
matrix_to_graph()
运行结果如下: