1160: 方格填数
时间限制: 1 Sec 内存限制: 128 MB提交: 60 解决: 26
[ 提交][ 状态][ 讨论版]
题目描述
如上面的10个格子,填入0~9的数字,不能重复(原先已经填了一部分数字),要求:连续的两个数字不能相邻(左右,上下,对角都算相邻)。例如:数字0和1不能放在一起。
问:一共有多少种可能的填数方案?
输入
输入多组测试数据。
每组测试数据有三行,第一行三个整数,第二行四个整数,第三行三个整数,之间用空格隔开,分别代表每个空格所填的数,如果原先没有数,则填-1。
输入数据保证不重复数字,不保证连续数字不相邻。
输出
每组测试数据输出一行。
输出表示方案数目的整数。
样例输入
-1 -1 -1
-1 -1 -1 -1
-1 -1 -1
0 1 -1
-1 -1 -1 -1
-1 -1 -1
1 3 5
-1 -1 -1 -1
-1 -1 -1
-1 -1 -1 -1
-1 -1 -1
0 1 -1
-1 -1 -1 -1
-1 -1 -1
1 3 5
-1 -1 -1 -1
-1 -1 -1
样例输出
158008
//思路:从第2个空至第11个空遍历填入数据,判断 每次填入的数 和 输入的数 的左、左上、上、右上满足不连续,能填到第11个数计数+1
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int a[5][5] = {-5};
int mark[11];
int count;
bool write() //写入
{
memset(mark,0,sizeof(mark));
for(int i = 1;i < 11;i ++ )
{
if(scanf("%d",&a[i / 4][i % 4]) == EOF)
return false;
if(a[i / 4][i % 4] != -1)
mark[a[i / 4][i % 4]] = 1;
}
return true;
}
bool judge(int x,int y,int m)
{
if(x > 0 && abs(a[x - 1][y] - m) == 1 ) //判断上方的数是否连续
return false;
if(y > 0 && abs(a[x][y - 1] - m) == 1) //左
return false;
if(x > 0 && y > 0 && abs(a[x - 1][y - 1] - m) == 1) //左上
return false;
if(x > 0 && y < 3 && abs(a[x - 1][y + 1] - m) == 1) //又上
return false;
return true; //四个方向都不连续
}
void dfs(int n)
{
int r, c;
r = n / 4; //行
c = n % 4; //列
if(n == 11) //填完十个数的出口
{
count ++ ;
return ;
}
if(a[r][c] == -1)
{
for(int i = 0;i < 10;i ++ ) //填入0~9的数
{
if(!mark[i] && judge(r,c,i)) //判断填入的数是否满足条件
{
a[r][c] = i; //填入
mark[i] = 1; //标记
dfs(n + 1);
a[r][c] = -1;
mark[i] = 0;
}
}
}
else if(judge(r,c,a[r][c]))//对输入的数据判断是否连续,若不连续返回上一层函数,
dfs(n + 1); //进入下一层,对下一个数判定
}
int main()
{
while(write())
{
count = 0;
dfs(1); //从第2个空开始填数
printf("%d\n",count);
}
return 0;
}