数据挖掘第九周周报

本周数据挖掘工作重点在于模型融合和参数设置,使用LGBM模型进行训练,尝试手动及bayes调参解决线上线下效果差距问题。通过对比和学习他人处理方式,调整LGBM参数并结合模型融合,取得一定进步。
摘要由CSDN通过智能技术生成
  • 数据挖掘第九周周报
  • 1、本周工作主要是进行在数据集的基础上进行模型融合与参数设置,经过处理以后得到了base_info.csv和entprise_info.csv的merge数据集,
  • 2、首先我先按照了训练赛的模型去训练我的数据集,但是效果不是很明显,可能是参数的问题,于是我放弃使用了学习赛的模型,转而百度了LGBM模型单独进行训练,然后是试着手动调节参数,根据手动调节的参数进行提交结果,虽然在自己本地有0.8443的结果,但是线上只有0.76:

应该是过拟合了
3、对于线上线下差别这么大,我感觉应该是过拟合了,于是乎我又回过头去看参数的设置,请教别人调参的技巧,于是我又尝试了bayes调参:

def LGB_bayesian(
        num_leaves,  # int
        min_data_in_leaf,  # int
        learning_rate,
        min_sum_hessian_in_leaf,  # int
        feature_fraction,
        lambda_l1,
        lambda_l2,
        min_gain_to_split,
        max_depth):
    # LightGBM expects next three parameters need to be integer. So we make them integer
    num_leaves = int(num_leaves)
    min_data_in_leaf = int(min_data_in_leaf)
    max_depth = int(max_depth)
 
    assert type(num_leaves) == int
    assert type(min_data_in_leaf) == int
    assert type(max_depth) == int
 
    param = {
        'num_leaves': num_leaves,
        'min_data_in_leaf': min_data_in_leaf,
        'learning_rate': learning_rate,
        'min_sum_hessian_in_leaf': min_sum_hessian_in_leaf,
        'feature_fraction': feature_fraction,
        'lambda_l1': lambda_l1,
        'lambda_l2': lambda_l2,
        'min_gain_to_split': min_gain_to_split,
        'max_depth': max_depth,
        'save_binary': True,
        'max_bin': 63,
        'bagging_fraction': 0.4,
        'bagging_freq': 5,
        'seed': 2019,
       # 'feature_fraction_seed': 2019,
       # 'bagging_seed': 2019,
       # 'drop_seed': 2019,
       # 'data_random_seed': 2019,
        'objective': 'binary',
        'boosting_type': 'gbdt',
        'verbose': -1,
        'metric': 'auc',
        #"tree_learner": "serial",
       # 'is_unbalance': True,
       # 'boost_from_average': False,
    }
    lgtrain = lgb.Dataset(X_train, label=y_train)
    lgval = lgb.Dataset(X_test, label=y_test)
    model = lgb.train(param, lgtrain, 20000, valid_sets=[lgval], early_stopping_rounds=100, verbose_eval=3000)
    pred_val_y = model.predict(X_test, num_iteration=model.best_iteration)
    score=metrics.roc_auc_score(y_test, pred_val_y)
    return score
bounds_LGB = {
    'num_leaves': (5, 20),
    'min_data_in_leaf': (5, 100),
    'learning_rate': (0.005, 0.3),
    'min_sum_hessian_in_leaf': (0.00001, 20),
    'feature_fraction': (0.001, 0.5),
    'lambda_l1': (0, 10),
    'lambda_l2': (0, 10),
    'min_gain_to_split': (0, 1.0),
    'max_depth':(3,200),
}
from bayes_opt import BayesianOptimization
 
LGB_BO = BayesianOptimization(LGB_bayesian, bounds_LGB, random_state=2019)
 
init_points = 5
n_iter = 200

但是不知道为什么这个玩意花里胡哨的却没有什么效果,得到的结果还是没有什么提升,于是我怀疑是不是自己的数据集没有处理好,我找到了一个baseline,看了看别人对于数据的处理,我发现大家的数据其实处理的也差不多,就是对数据缺失值多的去除,对象型数据转化为数据类型,甚至整个数据集处理的非常简单,但是他们的lgbm效果就是挺好。

4、后面我又百度了LGBM的调参,主要对以下几个参数进行设置:

parameters = {
              'max_depth': [15, 20, 25, 30, 35],
              'learning_rate': [0.01, 0.02, 0.05, 0.1, 0.15],
              'feature_fraction': [0.6, 0.7, 0.8, 0.9, 0.95],
              'bagging_fraction': [0.6, 0.7, 0.8, 0.9, 0.95],
              'bagging_freq': [2, 4, 5, 6, 8],
              'lambda_l1': [0, 0.1, 0.4, 0.5, 0.6],
              'lambda_l2': [0, 10, 15, 35, 40],
              'cat_smooth': [1, 10, 15, 20, 35]
}

得到的结果还行:
在这里插入图片描述
5、最后我还尝试了将几个模型融合在一起,采用加权取值的方法进行预估*(部分代码):

for train, test in sk.split(train_data, kind):
    x_train = train_data.iloc[train]
    y_train = kind.iloc[train]
    x_test = train_data.iloc[test]
    y_test = kind.iloc[test]

    xlf.fit(x_train, y_train)
    pred_xgb = xlf.predict(x_test)
    weight_xgb = eval_score(y_test,pred_xgb)['f1']

    llf.fit(x_train, y_train)
    pred_llf = llf.predict(x_test)
    weight_lgb = eval_score(y_test,pred_llf)['f1']

    clf.fit(x_train, y_train)
    pred_cab = clf.predict(x_test)
    weight_cab =  eval_score(y_test,pred_cab)['f1']

    rf.fit(x_train, y_train)
    pred_rf = rf.predict(x_test)
    weight_rf =  eval_score(y_test,pred_rf)['f1']


    prob_xgb = xlf.predict_proba(x_test)
    prob_lgb = llf.predict_proba(x_test)
    prob_cab = clf.predict_proba(x_test)
    prob_rf = rf.predict_proba(x_test)

    scores = []
    ijkl = []
    weight = np.arange(0, 1.05, 0.1)
    for i, item1 in enumerate(weight):
        for j, item2 in enumerate(weight[weight <= (1 - item1)]):
            for k, item3 in enumerate(weight[weight <= (1 - item1-item2)]):
                prob_end = prob_xgb * item1 + prob_lgb * item2 + prob_cab *item3+prob_rf*(1 - item1 - item2-item3)
                #prob_end = np.sqrt(prob_xgb**2 * item1 + prob_lgb**2 * item2 + prob_cab**2 *item3+prob_rf**2*(1 - item1 - item2-item3))
                score = eval_score(y_test,np.argmax(prob_end,axis=1))['f1']
                scores.append(score)
                ijkl.append((item1, item2,item3, 1 - item1 - item2-item3))

线下得到的结果:
在这里插入图片描述
线上的结果:

在这里插入图片描述
虽然和线下结果相差比较大,但是进步还是有点。

6、遇到的问题是线上线下预估的差别挺大的,可能还是测试集和验证集的差别导致的,线上比较好的参赛队伍里面他们也没有用到多少厉害的模型,别人的讨论更多是对数据集的处理,在和群里人员聊天的时候,也学到不少的知识,比如有些比赛有数据泄露什么的问题,请教过拟合的处理什么的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值