LGBM调参方法学习

本文介绍了LGBM的主要参数,包括objective、boosting、learning_rate等,并详细阐述了调参过程,特别是利用sklearn的GridSearchCV进行参数搜索。通过分析不同指标和参数对模型性能的影响,探讨了如何有效避免过拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、了解LGBM参数:

LGBM是微软发布的轻量梯度提升机,最主要的特点是快,回归和分类树模型。使用LGBM首先需要查看其参数含义:
微软官方github上的说明:
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst#early_stopping_round
LGBM中文手册:
http://lightgbm.apachecn.org/#/docs/2

所以大致了解参数设置:
1、核心参数:
“objective”: “regression”,
‘boosting’:‘gbdt’,
“learning_rate”: 0.05,
‘num_iterations’:100,
“num_leaves”: 31,
‘num_threads’:-1,
2、学习控制参数
“max_depth”: 10,
‘feature_fraction’:1,
‘bagging_fraction’:0.8,
‘bagging_freq’:8,
‘lambda_l1’:0,
‘lambda_l2’:0,
“min_data_in_leaf”: 20
‘min_sum_hessian_in_leaf’:1e-3

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值