python 字典快速匹配

有时候我们在生成模型的时候,会出现在一个好 几十万 的字典 dict 里面匹配数据,但往往这种方法造成的时间损耗是巨大的。

比如以下代码:

# word_index 就是有几十万数据的词汇字典
# post 就是分词后的文档
for w in post.split(" "):
    if w in word_index.keys():
        word_model.append(word_index[w])

这种方法往往是非常耗时的,但我们可以使用 pandas 模块实现这个快速匹配的问题,示例如下

# -*- coding:utf-8 -*-
import pandas as pd
# 词汇字典
ss = {"a":1,"b":2,"c":3,"d":4,"e":5}

# 文档分词
uu = ["a","c","f","d","b","h","e"]

# 将文档分词转换成 DF
article = pd.DataFrame({"word":uu})

# 将词汇字典也转换成 DF
wordid = pd.DataFrame({"word":[s[0] for s in ss.items()],"id":[s[1] for s in ss.items()]})
# 对字典设置索引
wordid.set_index("word")

# 进行匹配
df_inner = pd.merge(article,wordid,how = "inner")
print list(df_inner["id"])

更多的关于 pandas 的用法:https://blog.csdn.net/liufang0001/article/details/77856255

展开阅读全文

没有更多推荐了,返回首页