钢条切割问题

钢条切割问题

问题描述:给定一段长度为n英寸的钢条和一个价格表pi(i=1,2,n)p_i(i=1,2……,n),求切割钢条方案,使得收益rnr_n最大。(假设切割工序本身没有成本支出)

价格表样例:

长度ii 1 2 3 4 5 6 7 8 9 10
价格pipi 1 5 8 9 10 17 17 20 24 30

假设收益长度为nn英寸的最大收益为r[n]r[n]。其有递推方程

r[n]r[n]=max1in{pn,r[i]+r[ni]}\max_{1\le i\le n}\{p_n,r[i]+r[n-i]\}

则有如下代码:
代码下载

/**
 * 钢条切割问题
*/
#include <iostream>
#include <vector>
using namespace std;

pair<int,vector<int>> RodCutting(vector<int> &p,int n){
    vector<int> r(n+1,0);//初始化长度为n+1的数组,长度为0收益为0
    vector<vector<int>> s(n+1);//切割方案
    for (size_t i = 1; i <= n; i++)
    {
        r[i] = p[i-1];//初始一刀未切
        s[i] = vector<int>(1,i);
        for (size_t j = 1; j < i; j++)
        {
            //求出最佳切割方案
            if(r[j]+r[i-j]>r[i]) {
                r[i] = r[j]+r[i-j];
                vector<int> a = s[j];
                for(auto e : s[i-j]) a.push_back(e);//合并切割方案
                s[i]=a;
            }
        }
    }
    
    return make_pair(r[n],s[n]);


}
int main(){
    //测试价格表
    vector<int> p = {1,5,8,9,10,17,17,20,24,30};
    auto ans = RodCutting(p,10);
    cout<<"最佳收益:"<<ans.first<<endl;
    cout<<"切割方案:";
    for(auto e : ans.second) cout<<e<<" ";
    cout<<endl;
    system("pause");
    return 0;

}

Reference

《算法导论》第三版,第15章

©️2020 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值