矩阵链相乘问题

矩阵链相乘问题

  问题描述:考虑 n n n个矩阵的乘积: A 1 A 2 … A n A_1A_2…A_n A1A2An,确定最优的乘法顺序(最优括号化方案),使得标量(数值)乘法次数最少。其中, A i A_i Ai p i − 1 ⨯ p i p_{i-1}⨯p_i pi1pi矩阵, i = 1 , 2 , … , n i=1,2,…,n i=1,2,,n

  对于两矩阵元素相乘,结果矩阵的每一个元素,由原先两矩阵的行列对应元素相乘。因此,假设假设 A 1 为 m × n A_1为m\times n A1m×n矩阵, A 2 为 n × k A_2为n\times k A2n×k矩阵, A 1 A 2 = m × k × n A_1A_2=m\times k\times n A1A2=m×k×n,这么理解一共有 m × k m\times k m×k个元素,每个元素进行了 n n n次乘法得到。

  例:假设 A 1 为 10 × 5 A_1为10\times 5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值