矩阵链相乘问题
问题描述:考虑 n n n个矩阵的乘积: A 1 A 2 … A n A_1A_2…A_n A1A2…An,确定最优的乘法顺序(最优括号化方案),使得标量(数值)乘法次数最少。其中, A i A_i Ai为 p i − 1 ⨯ p i p_{i-1}⨯p_i pi−1⨯pi矩阵, i = 1 , 2 , … , n i=1,2,…,n i=1,2,…,n。
对于两矩阵元素相乘,结果矩阵的每一个元素,由原先两矩阵的行列对应元素相乘。因此,假设假设 A 1 为 m × n A_1为m\times n A1为m×n矩阵, A 2 为 n × k A_2为n\times k A2为n×k矩阵, A 1 A 2 = m × k × n A_1A_2=m\times k\times n A1A2=m×k×n,这么理解一共有 m × k m\times k m×k个元素,每个元素进行了 n n n次乘法得到。
例:假设 A 1 为 10 × 5 A_1为10\times 5

                  
                  
                  
                  
最低0.47元/天 解锁文章
                          
                      
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					3319
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            