总结【过往部分项目经历二(计算机图形学方向)】

1.加强杆自动生成算法

介绍: 主要用于牙科正畸定制化应用。采用纯数字化技术,一键导入加强杆后,自动摆放加强杆结构设计网格重建、接触部分自动定位、加强杆在U型牙模上动态滑动以及自动化生成,中间无需任何人工干预。且支持自动参数控制以及多参数控制。
支撑杆参数配置情况:

	// 支撑杆生成参数
    struct SupportBarOption
    {
        double semidiameter = 1; // 末端细小接触面半径
        double relPosition = 0.6;   // 杆相对高度
        double dirOffset = 2;  //杆两端细小接触部分长度
        double dist = 0.5;  //杆从末端向前移动的距离
        double barWidth = 3;  //杆主体断面边长
        double offsetZ = 1;  //细小楔形侧面向下拉伸量
        bool isDroopToBottom = false;  //杆底部是否下垂到底面
	};

早期常见问题汇总:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
U型牙模水平放平后在特定高度下的切层轮廓显示:
在这里插入图片描述
在这里插入图片描述

最终生成效果在blender中展示(杆的形状大小等参数可调):
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.牙龈线序列批量算法

介绍: 根据早期的牙模点云文件及对应的第一个牙龈线以及连续后面几个周期扫描的牙模点云文件,能够自动得到后期连续周期的牙龈线,实际上是个3D点云特征匹配问题。可以采用深度学习的GCN+Transformer混合架构处理局部特征及时间空间注意力匹配问题。主要用于牙科正畸康复医疗诊断领域。
网格模型表面曲率计算及可视化,颜色深蓝的表示负曲率,且负向绝对值越大,颜色红黄的表示正曲率绝对值越大。
在这里插入图片描述
重点关注非刚性变换,微小形变区域,也就是特征区域。
在这里插入图片描述
如果单纯基于刚性变换,则随着时间序列的累积,局部区域差异越大。
在这里插入图片描述
时间序列变换效果显示:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

3.光伏多阵列排布算法

介绍: 在太阳能光伏新能源领域中可能会用到。业务场景比较复杂,可选形态种类高达数千上万种(同类参数只算一种多话)。实际上是个复杂多目标优化问题。可以按照智能搜索算法(如遗传算法等),也可使用深度强化学习策略学习方向去做。
竖三+竖三横一拼接方案:
在这里插入图片描述
竖二横一+ 竖一+竖三+竖四横一方案,但应该不是最优方案。
在这里插入图片描述
在北纬30度地域一年四季的阴影遮挡分析及可视化。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值