Day10【基于encoder- decoder架构实现新闻文本摘要的提取】

1. 概述与背景

新闻摘要生成是自然语言处理(NLP)中的一个重要任务,其目标是自动从长篇的新闻文章中提取出简洁、准确的摘要。近年来,基于深度学习的摘要生成方法已成为主流,尤其是采用 Encoder-Decoder 架构的模型。这个架构在机器翻译、文本摘要、文档标注、多模态交互等领域取得了显著的效果。

本文基于现有数据集,先将输入的新闻文本数据和对应的标题摘要在已知词表上序列化,然后将序列化后的输入索引数据(作为输入文本数据)和标签索引数据(作为生成式文本摘要标签)共同输入到Encoder-Decoder模型架构中得到输出预测的文本摘要数据,之后将输出的预测文本摘要数据以及另一份标签索引数据(作为真实的文本标签)两者使用交叉熵损失函数计算loss,最后反向传播更新梯度。

2.参数配置

config.py

# -*- coding: utf-8 -*-

"""
配置参数信息
"""
import os
import torch

Config = {
    "model_path": "output",
    "input_max_length": 120,
    "output_max_length": 30,
    "epoch": 200,
    "batch_size": 32,
    "optimizer": "adam",
    "learning_rate":1e-3,
    "seed":42,
    "vocab_size":6219,
    "vocab_path":"vocab.txt",
    "train_data_path": r"sample_data.json",
    "valid_data_path": r"sample_data.json",
    "beam_size":5
    }

3.数据准备

词表文件vocab.txt词表文件
新闻文本数据训练和验证数据

4.数据加载

loader.py

# -*- coding: utf-8 -*-

import json
import torch
from torch.utils.data import DataLoader
"""
数据加载
"""


class DataGenerator:
    def __init__(self, data_path, config, logger):
        self.config = config
        self.logger = logger
        self.path = data_path
        self.vocab = load_vocab(config["vocab_path"])
        self.config["vocab_size"] = len(self.vocab)
        self.config["pad_idx"] = self.vocab["[PAD]"]
        self.config["start_idx"] = self.vocab["[CLS]"]
        self.config["end_idx"] = self.vocab["[SEP]"]
        self.load()

    def load(self):
        self.data = []
        with open(self.path, encoding="utf8") as f:
            for i, line in enumerate(f):
                line = json.loads(line)
                title = line["title"]
                content = line["content"]
                self.prepare_data(title, content)
        return

    #文本到对应的index
    #头尾分别加入[cls]和[sep]
    def encode_sentence(self, text, max_length, with_cls_token=True, with_sep_token=True):
        input_id = []
        if with_cls_token:
            input_id.append(self.vocab["[CLS]"])
        for char in text:
            input_id.append(self.vocab.get(char, self.vocab["[UNK]"]))
        if with_sep_token:
            input_id.append(self.vocab["[SEP]"])
        input_id = self.padding(input_id, max_length)
        return input_id

    #补齐或截断输入的序列,使其可以在一个batch内运算
    def padding(self, input_id, length):
        input_id = input_id[:length]
        input_id += [self.vocab["[PAD]"]] * (length - len(input_id))
        return input_id

    #输入输出转化成序列
    def prepare_data(self, title, content):
        input_seq = self.encode_sentence(content, self.config["input_max_length"], False, False) #输入序列
        output_seq = self.encode_sentence(title, self.config["output_max_length"], True, False) #输出序列

        gold = self.encode_sentence(title, self.config["output_max_length"], False, True) #不进入模型,用于计算loss

        self.data.append([torch.LongTensor(input_seq),
                          torch.LongTensor(output_seq),
                          torch.LongTensor(gold)])

        return


    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        return self.data[index]


def load_vocab(vocab_path):
    token_dict = {}
    with open(vocab_path, encoding="utf8") as f:
        for index, line in enumerate(f):
            token = line.strip()
            token_dict[token] = index
    return token_dict

#用torch自带的DataLoader类封装数据
def load_data(data_path, config, logger, shuffle=True):
    dg = DataGenerator(data_path, config, logger)
    dl = DataLoader(dg, batch_size=config["batch_size"], shuffle=shuffle)
    return dl

输入数据和标签的编码主要通过 encode_sentence 方法实现。具体来说,输入数据(如新闻内容)和标签(如新闻标题)都需要转化为对应的索引序列,以便供模型进行训练。编码过程如下:

  1. 输入数据(content)编码encode_sentence 方法将新闻内容转换为词汇表中的索引序列。首先,如果需要,添加 [CLS] 标记作为序列的开始,然后遍历文本中的每个字符,将其映射为词汇表中的索引,如果词汇表中没有该字符,则使用 [UNK](未知词)表示。最后,如果需要,添加 [SEP] 标记作为序列的结束。生成的索引序列会通过 padding 方法填充或截断至预设的最大长度。

  2. 标签数据(title)编码:标签(即标题)也会通过 encode_sentence 方法进行编码,步骤与输入数据类似,因为标题是需要预测生成表示要输出的序列,因此会包含 [CLS] 标记作为开头,不包含 [SEP],以区分输入和输出。

  3. 计算损失的 gold 序列:在训练中,为了计算损失,gold 序列会与输出序列相似,作为真实的标签,在它后面包含 [SEP] 标记和输出序列对齐,作为模型训练时的目标序列。

  4. 生成解码过程:模型训练完毕后,Decoder会根据输入的Encoder编码向量及输出序列的第一个标记CLS输出第一个预测的token,根据输入的Encoder编码向量及输出序列(第一个标记CLS+生成的前一个token)输出第二个预测token,之后再根据输入的Encoder编码向量及输出序列(第一个标记CLS+生成的前2个token)输出第三个预测token,以此类推。直到输出最后一个预测的tokenSEP时,生成解码过程结束。

  5. 在这里插入图片描述
    通过这样的编码方式,输入数据和标签数据被转化为整数索引序列,并进行填充或截断,以确保它们具有相同的长度,从而可以批量处理并输入到模型进行训练。

5.主程序

# -*- coding: utf-8 -*-
import sys
import torch
import random
import os
import numpy as np
import time
import logging
import json
from config import Config
from evaluate import Evaluator
from loader import load_data

#这个transformer是本文件夹下的代码,和我们之前用来调用bert的transformers第三方库是两回事
from transformer.Models import Transformer

logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)


"""
模型训练主程序
"""

# seed = Config["seed"]
# random.seed(seed)
# np.random.seed(seed)
# torch.manual_seed(seed)
# torch.cuda.manual_seed_all(seed)

def choose_optimizer(config, model):
    optimizer = config["optimizer"]
    learning_rate = config["learning_rate"]
    if optimizer == "adam":
        return torch.optim.Adam(model.parameters(), lr=learning_rate)
    elif optimizer == "sgd":
        return torch.optim.SGD(model.parameters(), lr=learning_rate)


def main(config):
    #创建保存模型的目录
    if not os.path.isdir(config["model_path"]):
        os.mkdir(config["model_path"])
    #加载模型
    logger.info(json.dumps(config, ensure_ascii=False, indent=2))
    model = Transformer(config["vocab_size"], config["vocab_size"], 0, 0,
                        d_word_vec=128, d_model=128, d_inner=256,
                        n_layers=1, n_head=2, d_k=64, d_v=64,
                        )
    # 标识是否使用gpu
    cuda_flag = torch.cuda.is_available()
    if cuda_flag:
        logger.info("gpu可以使用,迁移模型至gpu")
        model = model.cuda()
    #加载优化器
    optimizer = choose_optimizer(config, model)
    # 加载训练数据
    train_data = load_data(config["train_data_path"], config, logger)
    #加载效果测试类
    evaluator = Evaluator(config, model, logger)
    #加载loss
    loss_func = torch.nn.CrossEntropyLoss(ignore_index=0)
    #训练
    for epoch in range(config["epoch"]):
        epoch += 1
        model.train()
        if cuda_flag:
            model.cuda()
        logger.info("epoch %d begin" % epoch)
        train_loss = []
        for index, batch_data in enumerate(train_data):
            if cuda_flag:
                batch_data = [d.cuda() for d in batch_data]
            input_seq, target_seq, gold = batch_data

            pred = model(input_seq, target_seq)
            loss = loss_func(pred, gold.view(-1))

            train_loss.append(float(loss))
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

        logger.info("epoch average loss: %f" % np.mean(train_loss))
        evaluator.eval(epoch)
    model_path = os.path.join(config["model_path"], "epoch_%d.pth" % epoch)
    torch.save(model.state_dict(), model_path)
    return

if __name__ == "__main__":

    main(Config)

主程序主要实现了基于Transformer架构的模型训练过程。在训练过程中,首先通过配置文件Config获取相关参数,并根据配置创建一个Transformer模型。训练过程在指定的轮次(epoch)内进行,每一轮开始时,首先设定模型为训练模式。接着,对于每个训练批次,输入数据(input_seq)、目标序列(target_seq)和真实标签(gold)被送入模型中进行前向传播,计算出模型预测值(pred)。通过交叉熵损失函数(CrossEntropyLoss)与真实标签进行对比,得到当前批次的损失。损失值会被累积并进行反向传播(loss.backward()),优化器更新参数(optimizer.step()),并清空梯度缓存(optimizer.zero_grad())。每一轮训练结束后,打印出平均损失值并进行模型效果评估。

6.预测评估

evaluate.py

# -*- coding: utf-8 -*-
from loader import load_data
from collections import defaultdict
from transformer.Translator import Translator

"""
模型效果测试
"""

class Evaluator:
    def __init__(self, config, model, logger):
        self.config = config
        self.model = model
        self.logger = logger
        self.valid_data = load_data(config["valid_data_path"], config, logger, shuffle=False)
        self.reverse_vocab = dict([(y, x) for x, y in self.valid_data.dataset.vocab.items()])
        self.translator = Translator(self.model,
                                     config["beam_size"],
                                     config["output_max_length"],
                                     config["pad_idx"],
                                     config["pad_idx"],
                                     config["start_idx"],
                                     config["end_idx"])

    def eval(self, epoch):
        self.logger.info("开始测试第%d轮模型效果:" % epoch)
        self.model.eval()
        self.model.cpu()
        self.stats_dict = defaultdict(int)  # 用于存储测试结果
        for index, batch_data in enumerate(self.valid_data):
            input_seqs, target_seqs, gold = batch_data
            for input_seq in input_seqs:
                generate = self.translator.translate_sentence(input_seq.unsqueeze(0))
                print("输入:", self.decode_seq(input_seq))
                print("输出:", self.decode_seq(generate))
                break
        return

    def decode_seq(self, seq):
        pre_seq = []
        for idx in seq:
            if idx < 6 :
                continue
            char = self.reverse_vocab[int(idx)]
            pre_seq.append(char)
        return "".join(pre_seq)
        

在模型的评估过程中,验证集数据被加载并逐批传入模型进行推理。每一批数据中的输入序列通过 Translator 进行翻译,生成相应的预测输出。预测过程通常涉及使用模型的前向传播,将输入序列转化为目标语言的输出。为了评估模型效果,生成的输出是通过索引序列的方式进行表示,而这些索引随后会被映射回具体的词汇,通过反向词汇表解码为可读的文本。每次翻译后,模型的输入和生成的输出都会被打印出来,以便进行直观的对比。通过反复的测试与评估,能够逐步提高模型的准确性和生成质量。

7.生成效果

训练200轮效果:

2025-04-19 12:44:56,206 - __main__ - INFO - epoch 200 begin
2025-04-19 12:44:57,086 - __main__ - INFO - epoch average loss: 0.416101
2025-04-19 12:44:57,086 - __main__ - INFO - 开始测试第200轮模型效果:
输入: 阿根廷布宜诺斯艾利斯省奇尔梅斯市一服装店,8个月内被抢了三次。最后被抢劫的经历,更是直接让老板心理崩溃:歹徒在抢完不久后发现衣服“抢错了尺码”,理直气壮地拿着衣服到店里换,老板又不敢声张,只好忍气吞声。(中国新闻网)
输出: 阿根廷歹徒抢服装尺码不对拿回店里换
输入: 就俄罗斯免费医疗话题,国家卫生计生委国际司司长任明辉表示,真正的免费医疗制度不存在。或由税收支持,或个人和企业支付的医疗保险社会保险解决。免费医疗国家的患者看病不花钱,费用在各种税收或缴纳的保险中体现了。(网图)
输出: 卫生计生委国际司司长:真正的免费医疗不存在
输入: 6月合格境外机构投资者(QFII)加快入市步伐。据中登公司发布的20136月份统计月报显示,QFII基金6月份在沪深两市分别新增开户1415个A股股票账户,这29个账户让QFII在沪深两市的总账户数达到465个。
输出: 6月QFII积极入市新增开户户9户
输入: 路透社消息,一艘从利比亚横渡地中海开往意大利的偷渡船倾覆,约400人身亡。船上载有550多名偷渡客,许多是年轻人和儿童,大部分来自撒哈拉以南非洲地区。事发后意大利海防部队展开搜救,获救的150人被送往意大利南部港口。
输出: 从利比亚开往意大利:400偷渡客沉船身亡

8.总结

本文实现了一个基于 Transformer Encoder-Decoder 架构的新闻摘要生成系统。通过使用词汇表将输入数据和目标输出数据转化为索引序列,并通过交叉熵损失函数训练模型,模型通过 Beam Search 解码生成摘要。训练过程中使用了多轮的模型评估和优化,使得最终模型能够生成简洁、准确的新闻摘要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值