模型为
P
(
x
∣
h
)
=
N
(
x
∣
μ
+
Φ
h
,
Σ
)
P
(
h
)
=
N
(
h
∣
0
,
I
)
\begin{aligned} P( x| h) &= \mathcal N( x| \mu + \Phi h, \Sigma) \\ P( h) &= \mathcal N( h| 0, I) \end{aligned}
P(x∣h)P(h)=N(x∣μ+Φh,Σ)=N(h∣0,I)
其中
h
h
h的维度为
k
k
k,
x
x
x的维度为
d
(
d
>
k
)
d(d>k)
d(d>k),
Σ
\Sigma
Σ 是对角阵,求
P
(
x
)
P(x)
P(x).
这是高斯线性模型!!高斯线性模型!!高斯线性模型!!
别犹豫!!!直接套结论。结果为
Φ
Φ
T
+
Σ
\Phi\Phi^T +\Sigma
ΦΦT+Σ.
之前居然没想起来这个,手算了半天。
以下为之前手算的.
P
(
x
)
=
∫
N
(
x
∣
μ
+
Φ
h
,
Σ
)
N
(
h
∣
0
,
I
)
=
C
1
∫
e
x
p
{
−
1
2
(
x
−
μ
−
Φ
h
)
T
Σ
−
1
(
x
−
μ
−
Φ
h
)
}
e
x
p
{
−
1
2
h
T
h
}
d
h
=
C
2
∫
e
x
p
{
−
1
2
[
(
x
−
μ
)
T
Σ
−
1
(
x
−
μ
)
−
2
(
x
−
μ
)
T
Σ
−
1
Φ
h
+
h
T
(
Φ
T
Σ
−
1
Φ
+
I
)
h
]
}
d
h
=
C
3
exp
{
−
1
2
[
(
x
−
μ
)
T
[
Σ
−
1
−
Σ
−
1
Φ
(
Φ
T
Σ
−
1
Φ
+
I
)
−
1
Φ
T
Σ
−
1
]
(
x
−
μ
)
]
}
×
∫
e
x
p
{
−
1
2
[
h
−
(
Φ
T
Σ
−
1
Φ
+
I
)
−
1
Φ
T
Σ
−
1
(
x
−
μ
)
]
T
(
Φ
T
Σ
−
1
Φ
+
I
)
[
h
−
(
Φ
T
Σ
−
1
Φ
+
I
)
−
1
Φ
T
Σ
−
1
(
x
−
μ
)
]
}
d
h
\begin{aligned} P( x) &= \int \mathcal N( x| \mu + \Phi h, \Sigma) \mathcal N ( h|0, I) \\ =& C_1 \int exp \left\{-\frac{1}{2}( x- \mu - \Phi h)^T \Sigma^{-1}( x- \mu - \Phi h) \right\} exp \left\{-\frac{1}{2} h^T h\right\} d h \\ =& C_2 \int exp\left\{-\frac{1}{2} [( x- \mu)^T \Sigma^{-1}( x- \mu ) -2( x - \mu)^T \Sigma^{-1} \Phi h + h^T ( \Phi^T \Sigma^{-1} \Phi + I) h]\right\} d h \\ =& C_3 \exp \left \{ -\frac{1}{2}[( x- \mu)^T[ \Sigma^{-1} - \Sigma^{-1} \Phi ( \Phi^T \Sigma^{-1} \Phi + I)^{-1} \Phi^T \Sigma^{-1}]( x- \mu )] \right \} \\& \times \int exp \left \{-\frac{1}{2} [ h - ( \Phi^T \Sigma ^{-1} \Phi + I)^{-1} \Phi^T \Sigma^{-1}( x - \mu)]^T ( \Phi^T \Sigma^{-1} \Phi + I)[ h - ( \Phi^T \Sigma ^{-1} \Phi + I)^{-1} \Phi^T \Sigma^{-1}( x - \mu)] \right \} d h \end{aligned}
P(x)====∫N(x∣μ+Φh,Σ)N(h∣0,I)C1∫exp{−21(x−μ−Φh)TΣ−1(x−μ−Φh)}exp{−21hTh}dhC2∫exp{−21[(x−μ)TΣ−1(x−μ)−2(x−μ)TΣ−1Φh+hT(ΦTΣ−1Φ+I)h]}dhC3exp{−21[(x−μ)T[Σ−1−Σ−1Φ(ΦTΣ−1Φ+I)−1ΦTΣ−1](x−μ)]}×∫exp{−21[h−(ΦTΣ−1Φ+I)−1ΦTΣ−1(x−μ)]T(ΦTΣ−1Φ+I)[h−(ΦTΣ−1Φ+I)−1ΦTΣ−1(x−μ)]}dh
其中
C
1
,
C
2
,
C
3
C_1,C_2,C_3
C1,C2,C3表示
x
,
h
x,h
x,h无关的系数。注意到把
x
x
x有关而
h
h
h无关的项提到积分外,积分内是关于
h
h
h的一个高斯分布。积分后得到
C
4
exp
{
−
1
2
[
(
x
−
μ
)
T
[
Σ
−
1
−
Σ
−
1
Φ
(
Φ
T
Σ
−
1
Φ
+
I
)
−
1
Φ
T
Σ
−
1
]
(
x
−
μ
)
]
}
\begin{aligned} C_4 \exp \left \{ -\frac{1}{2}[( x- \mu)^T[ \Sigma^{-1} - \Sigma^{-1} \Phi ( \Phi^T \Sigma^{-1} \Phi + I)^{-1} \Phi^T \Sigma^{-1}]( x- \mu )] \right \} \end{aligned}
C4exp{−21[(x−μ)T[Σ−1−Σ−1Φ(ΦTΣ−1Φ+I)−1ΦTΣ−1](x−μ)]}
这是一个高斯分布,均值为
μ
\mu
μ,方差为
[
Σ
−
1
−
Σ
−
1
Φ
(
Φ
T
Σ
−
1
Φ
+
I
)
−
1
Φ
T
Σ
−
1
]
−
1
(1)
[ \Sigma^{-1} - \Sigma^{-1} \Phi ( \Phi^T \Sigma^{-1} \Phi + I)^{-1} \Phi^T \Sigma^{-1}]^{-1} \tag{1}
[Σ−1−Σ−1Φ(ΦTΣ−1Φ+I)−1ΦTΣ−1]−1(1)
这里套用Sherman-Morrison-Woodbury恒等式(矩阵求逆引理),式(1)化为
Φ
Φ
T
+
Σ
\Phi\Phi^T +\Sigma
ΦΦT+Σ
- Sherman-Morrison-Woodbury恒等式:
考虑 A ∈ R d × d , B ∈ R k × d , C ∈ R k × k A \in \mathbb R ^{d\times d}, B \in \mathbb R ^{k\times d}, C \in \mathbb R ^{k\times k} A∈Rd×d,B∈Rk×d,C∈Rk×k,其中 A , C A, C A,C正定对称,则有
( A − 1 + B T C − 1 B ) − 1 = A − A B T ( B A B T + C ) − 1 B A (A^{-1} + B^T C^{-1} B)^{-1}=A-AB^T(BAB^T+C)^{-1}BA (A−1+BTC−1B)−1=A−ABT(BABT+C)−1BA
该式的另一个用处是降低求逆维度,可以把左侧对 d d d维求逆改为右侧对 k k k维求逆,如果 d > k d>k d>k的话,则有助于求逆
上述恒等式和舒尔补恒等式也很有关系。