因子分析的边缘分布推导——CVMLI Prince读书随笔第7章

模型为
P ( x ∣ h ) = N ( x ∣ μ + Φ h , Σ ) P ( h ) = N ( h ∣ 0 , I ) \begin{aligned} P( x| h) &= \mathcal N( x| \mu + \Phi h, \Sigma) \\ P( h) &= \mathcal N( h| 0, I) \end{aligned} P(xh)P(h)=N(xμ+Φh,Σ)=N(h0,I)
其中 h h h的维度为 k k k x x x的维度为 d ( d > k ) d(d>k) d(d>k) Σ \Sigma Σ 是对角阵,求 P ( x ) P(x) P(x).
这是高斯线性模型!!高斯线性模型!!高斯线性模型!!
别犹豫!!!直接套结论。结果为 Φ Φ T + Σ \Phi\Phi^T +\Sigma ΦΦT+Σ.
之前居然没想起来这个,手算了半天。


以下为之前手算的.
P ( x ) = ∫ N ( x ∣ μ + Φ h , Σ ) N ( h ∣ 0 , I ) = C 1 ∫ e x p { − 1 2 ( x − μ − Φ h ) T Σ − 1 ( x − μ − Φ h ) } e x p { − 1 2 h T h } d h = C 2 ∫ e x p { − 1 2 [ ( x − μ ) T Σ − 1 ( x − μ ) − 2 ( x − μ ) T Σ − 1 Φ h + h T ( Φ T Σ − 1 Φ + I ) h ] } d h = C 3 exp ⁡ { − 1 2 [ ( x − μ ) T [ Σ − 1 − Σ − 1 Φ ( Φ T Σ − 1 Φ + I ) − 1 Φ T Σ − 1 ] ( x − μ ) ] } × ∫ e x p { − 1 2 [ h − ( Φ T Σ − 1 Φ + I ) − 1 Φ T Σ − 1 ( x − μ ) ] T ( Φ T Σ − 1 Φ + I ) [ h − ( Φ T Σ − 1 Φ + I ) − 1 Φ T Σ − 1 ( x − μ ) ] } d h \begin{aligned} P( x) &= \int \mathcal N( x| \mu + \Phi h, \Sigma) \mathcal N ( h|0, I) \\ =& C_1 \int exp \left\{-\frac{1}{2}( x- \mu - \Phi h)^T \Sigma^{-1}( x- \mu - \Phi h) \right\} exp \left\{-\frac{1}{2} h^T h\right\} d h \\ =& C_2 \int exp\left\{-\frac{1}{2} [( x- \mu)^T \Sigma^{-1}( x- \mu ) -2( x - \mu)^T \Sigma^{-1} \Phi h + h^T ( \Phi^T \Sigma^{-1} \Phi + I) h]\right\} d h \\ =& C_3 \exp \left \{ -\frac{1}{2}[( x- \mu)^T[ \Sigma^{-1} - \Sigma^{-1} \Phi ( \Phi^T \Sigma^{-1} \Phi + I)^{-1} \Phi^T \Sigma^{-1}]( x- \mu )] \right \} \\& \times \int exp \left \{-\frac{1}{2} [ h - ( \Phi^T \Sigma ^{-1} \Phi + I)^{-1} \Phi^T \Sigma^{-1}( x - \mu)]^T ( \Phi^T \Sigma^{-1} \Phi + I)[ h - ( \Phi^T \Sigma ^{-1} \Phi + I)^{-1} \Phi^T \Sigma^{-1}( x - \mu)] \right \} d h \end{aligned} P(x)====N(xμ+Φh,Σ)N(h0,I)C1exp{21(xμΦh)TΣ1(xμΦh)}exp{21hTh}dhC2exp{21[(xμ)TΣ1(xμ)2(xμ)TΣ1Φh+hT(ΦTΣ1Φ+I)h]}dhC3exp{21[(xμ)T[Σ1Σ1Φ(ΦTΣ1Φ+I)1ΦTΣ1](xμ)]}×exp{21[h(ΦTΣ1Φ+I)1ΦTΣ1(xμ)]T(ΦTΣ1Φ+I)[h(ΦTΣ1Φ+I)1ΦTΣ1(xμ)]}dh
其中 C 1 , C 2 , C 3 C_1,C_2,C_3 C1,C2,C3表示 x , h x,h x,h无关的系数。注意到把 x x x有关而 h h h无关的项提到积分外,积分内是关于 h h h的一个高斯分布。积分后得到
C 4 exp ⁡ { − 1 2 [ ( x − μ ) T [ Σ − 1 − Σ − 1 Φ ( Φ T Σ − 1 Φ + I ) − 1 Φ T Σ − 1 ] ( x − μ ) ] } \begin{aligned} C_4 \exp \left \{ -\frac{1}{2}[( x- \mu)^T[ \Sigma^{-1} - \Sigma^{-1} \Phi ( \Phi^T \Sigma^{-1} \Phi + I)^{-1} \Phi^T \Sigma^{-1}]( x- \mu )] \right \} \end{aligned} C4exp{21[(xμ)T[Σ1Σ1Φ(ΦTΣ1Φ+I)1ΦTΣ1](xμ)]}
这是一个高斯分布,均值为 μ \mu μ,方差为
[ Σ − 1 − Σ − 1 Φ ( Φ T Σ − 1 Φ + I ) − 1 Φ T Σ − 1 ] − 1 (1) [ \Sigma^{-1} - \Sigma^{-1} \Phi ( \Phi^T \Sigma^{-1} \Phi + I)^{-1} \Phi^T \Sigma^{-1}]^{-1} \tag{1} [Σ1Σ1Φ(ΦTΣ1Φ+I)1ΦTΣ1]1(1)
这里套用Sherman-Morrison-Woodbury恒等式(矩阵求逆引理),式(1)化为 Φ Φ T + Σ \Phi\Phi^T +\Sigma ΦΦT+Σ

  • Sherman-Morrison-Woodbury恒等式
    考虑 A ∈ R d × d , B ∈ R k × d , C ∈ R k × k A \in \mathbb R ^{d\times d}, B \in \mathbb R ^{k\times d}, C \in \mathbb R ^{k\times k} ARd×d,BRk×d,CRk×k,其中 A , C A, C A,C正定对称,则有
    ( A − 1 + B T C − 1 B ) − 1 = A − A B T ( B A B T + C ) − 1 B A (A^{-1} + B^T C^{-1} B)^{-1}=A-AB^T(BAB^T+C)^{-1}BA (A1+BTC1B)1=AABT(BABT+C)1BA
    该式的另一个用处是降低求逆维度,可以把左侧对 d d d维求逆改为右侧对 k k k维求逆,如果 d > k d>k d>k的话,则有助于求逆

上述恒等式和舒尔补恒等式也很有关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值