深度学习
文章平均质量分 89
深度学习的方方面面
Trade Off
Homepage: xuyangguo.github.io
读书、数学、代码爱好者;PRML、ESLII读书笔记;关注CV、ML、DL、DIP、传统算法等领域
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
分享自己的第一篇ECCV工作:可控头发编辑CtrlHair
ECCV2022可控头发编辑方法原创 2022-07-19 11:33:44 · 878 阅读 · 2 评论 -
论文阅读记录 101-150篇 20210818-
这一段时间的论文阅读笔记原创 2021-08-18 15:21:58 · 598 阅读 · 0 评论 -
PRML第五章读书笔记——Neural Networks 二次下降、Hessian矩阵的近似求解和精确求解、正切传播/Tikhonov正则化/软权值共享、混合密度网络、贝叶斯神经网络
目录原创 2020-10-02 21:38:52 · 1325 阅读 · 7 评论 -
论文阅读记录 51-100篇 20200316-20210817
2020-3-16Semantic Image Synthesis with Spatially-Adaptive NormalizationCVPR2019 semantic map 2 image提出Spatially-Adaptive,在semantic mask上通过网络层得到均值和方差map(不是一个标量,也即和Contitional BN的区别),然后把它用于偏移noise上。...原创 2020-03-16 18:26:07 · 1649 阅读 · 0 评论 -
神经网络反向传播向量化
Latex的没写,因为没(wo)有(tai)时(lan)间(le),以后再补上。参考资料:矩阵求导术-上记得有空把下看啦。原创 2020-01-12 17:36:34 · 1286 阅读 · 0 评论 -
CS231n Assignment 备忘
关于LSTM反向传播时状态s也要反向传播,而且要初始化为0。原因和h类似,建议画一下图。h在反向传播时,是后一个节点和当前层输出对应loss的传播之和。整体反向传播的输入参数的dh一般是指每一层的输出对应的loss传播。关于pytorch创建变量时,torch.zeros((N)).type(dtype) 中的 .type(dtype) 很重要!不然默认在CPU,往后写的时候会出现类...原创 2018-10-11 20:26:44 · 342 阅读 · 0 评论 -
Pytorch Note
如果网络的输入数据维度或类型上变化不大,设置 torch.backends.cudnn.benchmark = true 可以增加运行效率;如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率。...原创 2018-11-21 16:37:10 · 441 阅读 · 2 评论 -
论文阅读记录 1-50篇 20190410-20200316
2019-4-10High-resolution image synthesis and semantic manipulation with conditional gansCVPR 2018 层级结构 高分辨率图像生成CFGAN的被引2019-4-11Learning compositional visual concepts with mutual consistency...原创 2019-04-19 15:58:41 · 2615 阅读 · 0 评论
分享