【软考】COCOMOII 模型

1. 说明
  • 1.最初的 COCOMO 模型是得到产业界最广泛应用和讨论的软件成本估算模型之一,现在它已经演化成更全面的估算模型,称为 COCOMOII。
  • 2.和其前身一样,COCOMOII 也是一种层次结构的估算模型,被分为3个阶段性模型。
  • 3.应用组装模型。在软件工程的前期阶段使用,这时用户界面的原型开发、对软件和系统交互的考虑、性能的评估以及技术成熟度的评价是最重要的。
  • 4.早期设计阶段模型。在需求已经稳定并且基本的软件体系结构已经建立时使用。
  • 5.体系结构阶段模型。在软件的构造过程中使用。
  • 6.和所有的软件估算模型一样,COCOMOI模型也需要使用规模估算信息,在模型层次结构中有3种不同的规模估算选择:对象点功能点代码行
  • 7. 应用组装模型使用的是对象点;早期设计阶段模型使用的是功能点,功能点可以转换为代码行
  • 8.对象点也是一种间接的软件测量。计算对象点时使用如下的计数值:(用户界面的)屏幕书;报表数;构造应用系统可能需要的构件数。
2. 例题
2.1 例题1
  • 1.题目
1.软件项目成本估算模型COCOMO II中,体系结构阶段模型基于(D)进行估算。
A.应用程序点数量
B.功能点数量
C.复用或生成的代码行数
D.源代码的行数
  • 2.解析
1.应用组装模型使用的是对象点。
2.早期设计阶段模型使用的是功能点,功能点可以转换为代码行。
3.体系结构模型使用的是代码行数。
2.2 例题2
  • 1.题目
2.工作量估算模型COCOMOI的层次结构中,估算选择不包括(C)。

A.对象点
B.功能点
C.用例数
D.源代码行
  • 2.解析
1.COCOMO II模型也是需要使用规模去估算信息,在模型层次结构中总共有3种不同规模估算选择:对象点、功能点和代码行。
COCOMO评估工具 What is COCOMO? COCOMO (COnstructive COst MOdel) is a screen-oriented, interactive software package that assists in budgetary planning and schedule estimation of a software development project. Through the flexibility of COCOMO, a software project manager (or team leader) can develop a model (or multiple models) of projects in order to identify potential problems in resources, personnel, budgets, and schedules both before and while the potential software package is being developed. The COCOMO software package is based upon the software cost and schedule estimation model: COnstructive COst MOdel version II (COCOMOII). This is the newly revised version of the original COnstructive COst MOdel (COCOMO) first published by Dr. Barry Boehm in his book Software Engineering Economics, Prentice-Hall (1981), and Ada COCOMO (1989) predecessors. The current model is described in [Boehm et al. 1995] The primary objectives of the COCOMOII.1998 effort are: ◾ To develop a software cost and schedule estimation model tuned to the life cycle practices of the 1990's and 2000's. ◾ To develop software cost database and tool support capabilities for continuous model improvement. ◾ To provide a quantitative analytic framework, and set of tools and techniques for evaluating the effects of software technology improvements on software life cycle costs and schedules. The full COCOMOII model includes three stages. Stage 1 supports estimation of prototyping or applications composition efforts. Stage 2 supports estimation in the Early Design stage of a project, when less is known about the project’s cost drivers. Stage 3 supports estimation in the Post-Architecture stage of a project. This version of USC COCOMOII implements stage 3 formulas to estimate the effort, schedule, and cost required to develop a software product. It also provides the breakdown of effort and schedule into software life-cycle phases and activities from the original COCOMO manual. These are still reasonably valid for waterfall model software projects, but need to be interpreted for non-waterfall projects.
### XGBoost模型用于生物量估算的方法实现 XGBoost 是一种高效的梯度提升框架,广泛应用于各种预测任务中。它能够有效处理高维数据并提供强大的非线性拟合能力,在遥感影像分析和生态学研究中被频繁用来进行植被生物量的估算。 #### 数据准备阶段 在使用 XGBoost 进行生物量估算之前,需要收集高质量的数据集。这些数据通常包括来自卫星传感器的多光谱或超光谱图像以及地面实测的生物量数据作为目标变量。例如,可以利用 Sentinel-2 或 Landsat 卫星获取的地表反射率数据来构建特征矩阵[^1]。 为了提高模型性能,还需要对原始输入信号进行预处理操作,这可能涉及以下几个方面: - **去噪**:去除噪声干扰以保留真实有效的信息; - **归一化**:使不同波段间的数值范围一致从而便于后续计算; - **特征工程**:手动选取或者自动提取有助于区分样本差异的关键指标,比如NDVI(标准化差分植被指数)、EVI(增强型植被指数)等遥感衍生参数。 完成上述步骤之后,就可以得到一组经过良好表示后的输入向量供下一步训练之用。 #### 模型建立与调参过程 一旦准备好干净整齐的数据集合,接下来就是定义具体的算法结构及其配置选项了: ```python import xgboost as xgb from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import mean_squared_error # 加载已处理完毕的数据 data = ... # 特征列组成的二维数组 shape=(n_samples,n_features) labels = ... # 对应每条记录的实际测量值列表 length=n_samples # 划分训练集测试集 train_X, test_X, train_y, test_y = train_test_split(data, labels, test_size=0.2) # 初始化DMatrix对象加速运算效率 dtrain = xgb.DMatrix(train_X,label=train_y) dtest = xgb.DMatrix(test_X) # 设置基础参数字典形式表达 params={ 'objective':'reg:squarederror', # 回归问题损失函数选择平方误差 'eval_metric': ['rmse'], # 测试过程中监控评估标准采用均方根误 } # 执行交叉验证寻找最佳迭代次数 cv_results=xgb.cv(params,dtrain,num_boost_round=500,folds=5, early_stopping_rounds=30,stratified=False) best_num_round=int(cv_results['test-rmse-mean'].argmin()) # 构造最终版完整模型实例 bst=xgb.train(params=params,dtrain=dtrain,num_boost_round=best_num_round) # 预测新样例的结果 preds=bst.predict(dtest) print('The RMSE of prediction is:',mean_squared_error(test_y,preds)**0.5) ``` 以上代码片段展示了如何运用Python接口下的`xgboost`库快速搭建起一套完整的流程体系。其中特别注意的是对于连续型输出变量而言应当指定恰当的目标函数类型;另外借助网格搜索技术配合内置工具可进一步优化超参数组合达到更优解空间探索效果。 此外值得注意的一点在于实际应用当中往往还会涉及到更多细节方面的量因素,诸如缺失值填补策略、异常检测剔除机制等等都会不同程度影响到整体表现水平高低起伏变化情况不一而足[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王佑辉

老板,赏点吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值