本文参考www.deeplearningbook.org一书第二章2.3 Identity and Inverse Matrices 2.4 Linear Dependence and Span
本文围绕线性方程求解依次介绍矩阵的逆、线性组合、线性独立等线性代数的基础知识点。
一、线性方程
本文主要围绕求解线性方程展开,我们先把线性方程写出来,方程如下:
其中,
是已知的;
,
是已知的;
,
是未知的,需要我们求解。即上述方程已知
和
,求
。
为了求,有很多思路,其中有个思路就是通过矩阵的逆来求
。对于一些
,可以通过矩阵的逆来求
。
二、单位矩阵(identity matrix)和矩阵的逆(matrix inverse)
在介绍矩阵的逆之前,需要先了解下单位矩阵。
单位矩阵
单位矩阵是指这样一个矩阵:当一个矩阵乘一个向量,相乘的结果依然是这个向量,那么这个矩阵就是单位矩阵。即对 ,有
,其中
。
单位矩阵的形式是很简单的,矩阵的主对角线上的值为1,其余位置的值都为0。例如:
;
;
;等等
单位矩阵有一个性质,那就是对于,有
。
矩阵的逆
如果一个矩阵 满足
,那么矩阵
就是矩阵
的逆(更具体来讲叫左逆)。我们一般把这样的矩阵
计作
,即
。
根据矩阵的逆的定义,我们可以推导出来以下结论:
推导1、当矩阵 是方阵时,矩阵
的逆
才有可能存在;当矩阵
不是方阵时,矩阵
的逆