线性代数:线性方程求解、矩阵的逆、线性组合、线性独立

本文介绍了线性方程的求解,重点讨论了矩阵的逆和单位矩阵的概念,以及线性独立和线性组合在解线性方程中的作用。当矩阵是方阵且可逆时,可以通过矩阵逆求解线性方程,而线性独立的向量组决定了方程解的存在性和唯一性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文参考www.deeplearningbook.org一书第二章2.3 Identity and Inverse Matrices 2.4 Linear Dependence and Span

本文围绕线性方程求解依次介绍矩阵的逆、线性组合、线性独立等线性代数的基础知识点。

一、线性方程

本文主要围绕求解线性方程展开,我们先把线性方程写出来,方程如下:

\mathbf{A}\mathbf{x}=\boldsymbol{b}

其中\mathbf{A}\in \mathbb{R}^{m\times n}\mathbf{A}是已知的;\mathbf{b}\in \mathbb{R}^{m}\mathbf{b}是已知的;\mathbf{x}\in \mathbb{R}^{n}\mathbf{x}是未知的,需要我们求解。即上述方程已知\mathbf{A}\mathbf{b},求\mathbf{x}

为了求\mathbf{x},有很多思路,其中有个思路就是通过矩阵的逆来求\mathbf{x}。对于一些\mathbf{A},可以通过矩阵的逆来求\mathbf{x}

二、单位矩阵(identity matrix)和矩阵的逆(matrix inverse)

在介绍矩阵的逆之前,需要先了解下单位矩阵。

单位矩阵

单位矩阵是指这样一个矩阵:当一个矩阵乘一个向量,相乘的结果依然是这个向量,那么这个矩阵就是单位矩阵。即对 \forall \mathbf{x}\in \mathbb{R}^{n},有 \mathbf{I}_{n}\mathbf{x}=\mathbf{x},其中 \mathbf{I}_{n}\in \mathbb{R}^{n\times n}

单位矩阵的形式是很简单的,矩阵的主对角线上的值为1,其余位置的值都为0。例如:

\mathbf{I_{2}}=\begin{bmatrix} 1 & 0\\ 0& 1 \end{bmatrix}        ;\mathbf{I_{3}}=\begin{bmatrix} 1 & 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix}        ;\mathbf{I_{4}}=\begin{bmatrix} 1 & 0& 0&0 \\ 0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1 \end{bmatrix}        ;等等

单位矩阵有一个性质,那就是对于\forall \mathbf{A}\in \mathbb{R}^{n\times n},有 \mathbf{A}\mathbf{I}_{n}=\mathbf{I}_{n}\mathbf{A}=\mathbf{A}

矩阵的逆

如果一个矩阵 \mathbf{B} 满足\mathbf{B}\mathbf{A}=\mathbf{I_{n}},那么矩阵 \mathbf{B} 就是矩阵 \mathbf{A} 的逆(更具体来讲叫左逆)。我们一般把这样的矩阵 \mathbf{B} 计作\mathbf{A}^{-1},即\mathbf{A}^{-1}\mathbf{A}=\mathbf{I_{n}}

根据矩阵的逆的定义,我们可以推导出来以下结论:

推导1、当矩阵 \mathbf{A} 是方阵时,矩阵 \mathbf{A} 的逆\mathbf{A}^{-1}才有可能存在;当矩阵 \mathbf{A} 不是方阵时,矩阵 \mathbf{A} 的逆

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值