在对不平衡数据进行训练时,通常会考虑一下怎么处理不平衡数据能使训练出来的结果较好。能想到的比较基础的方法是过采样和下采样来缓解数据中的正负样本比。
在用xgboost训练二分类模型时,除了直接使用过采样和下采样,xgboost接口还提供一些处理不平衡数据的方法,有scale_pos_weight参数的设置,还有给样本赋予一定的权重。接下来让我们仔细看一下吧~
参数scale_pos_weight:
官方的解释是这样的,scale_pos_weight可以设置为数据中负样本数量/正样本数量
设置样本的权重,在DMatrix里边可以设置
这两者有什么区别吗?然后我做了一个实验。
实验使用的数据量80000,其中负样本60000(标签为0),正样本20000(标签为1),负样本是正样本数量的3倍。
1、使用scale_pos_weight
params = {
'booster': 'gbtree',
'objective': 'binary:logistic',
'met