python实现logistic回归算法

'''
logistic回归函数
'''

from __future__ import  print_function

import tensorflow as tf

#导入MNIST数据
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/",one_hot=True)

#参数
learning_rate = 0.01
training_epochs = 25
batch_size = 100
display_step = 1

#tf图表输入
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])

#设置模型权重
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

#构建模型
pred = tf.nn.softmax(tf.matmul(x,W) + b)

#交叉熵最小化误差
cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred),reduction_indices=1))

#梯度下降
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

#初始化变量
init = tf.global_variables_initializer()

#开始训练
with tf.Session() as sess:

    #开始初始化
    sess.run(init)

    #训练周期
    for epoch in range(training_epochs):
        avg_cost = 0.
        total_batch = int(mnist.train.num_examples / batch_size)

        #循环
        for i in range(total_batch):
            batch_xs,batch_ys = mnist.train.next_batch(batch_size)
            #运行优化操作(backprop)和成本操作(获取损失值)
            _, c = sess.run([optimizer,cost],feed_dict={x:batch_xs,y:batch_ys})
            #计算平均损失
            avg_cost += c / total_batch
        #显示每步日志
        if (epoch + 1) % display_step == 0:
            print("Epoch:",'%04d' % (epoch + 1),"cost=","{:.9f}".format(avg_cost))
    print("优化完成")
    #测试模型
    correct_prediction = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
    #计算准确度
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    print("Accuracy:",accuracy.eval({x:mnist.test.images,y:mnist.test.labels}))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值