poj2486 apple tree

Wshxzt is a lovely girl. She likes apple very much. One day HX takes her to an apple tree. There are N nodes in the tree. Each node has an amount of apples. Wshxzt starts her happy trip at one node. She can eat up all the apples in the nodes she reaches. HX is a kind guy. He knows that eating too many can make the lovely girl become fat. So he doesn’t allow Wshxzt to go more than K steps in the tree. It costs one step when she goes from one node to another adjacent node. Wshxzt likes apple very much. So she wants to eat as many as she can. Can you tell how many apples she can eat in at most K steps.
Input
There are several test cases in the input 
Each test case contains three parts. 
The first part is two numbers N K, whose meanings we have talked about just now. We denote the nodes by 1 2 ... N. Since it is a tree, each node can reach any other in only one route. (1<=N<=100, 0<=K<=200) 
The second part contains N integers (All integers are nonnegative and not bigger than 1000). The ith number is the amount of apples in Node i. 
The third part contains N-1 line. There are two numbers A,B in each line, meaning that Node A and Node B are adjacent. 
Input will be ended by the end of file. 

Note: Wshxzt starts at Node 1.
Output
For each test case, output the maximal numbers of apples Wshxzt can eat at a line.
Sample Input
2 1 
0 11
1 2
3 2
0 1 2
1 2
1 3
Sample Output
11
2
这个题我还不是很理解,大概知道思路,给出大神的讲解

题意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走V步,最多能遍历到的权值

我们把背包的思想用到这里来,做的步数相当于背包的容量,点上的权值相当于价值,给定一定的背包容量,求最多能装进背包的价值

设dp[0][s][j]表示从s(当前根节点)出发,走 j 步,回到s所能获得的最大权值

   dp[1][s][j]表示从s(当前根节点)出发,走j步,不回到s所能获得的最大权值

现在我们就可以分配背包容量了:父节点与子节点分配背包容量,从而设计出状态转移方程

主要思想:

s返回,t返回   

s不返回,t返回(走向t子树,t子树返回之后走向s的其他子树,然后不回到s)

s返回,t不返回(遍历s的其他子树后返回s,返回之后走向t子树,然后不回到t)

没有都不返回,肯定有一方有一个返回的过程,再去另一边的子树的

总结起来一句话,要么去s的其他子树呆着,要么去t子树呆着,要么回到s点

1、在t子树返回,其他子树也返回,即回到当前根节点s

2,、不返回根节点,但在t子树返回,即相当于从t出发走k步返回t的最优值  加上  从s出发走j-k步到其他子树不返回的最优值,中间有s与t连接起来,其实就等于从s出发遍历t子树后(dp[0][t][k])又回到s(这一步多了中间的来回两步),再走出去(其他子树)【dp[1][s][j-k]】,不回来

3、不返回根节点,在t子树也不返回,等价于从s出发遍历其他子树,回到s(dp[0][s][j-k]),再走向t子树,不回到t(dp[1][t][k]),这个过程s-t只走了一步

dp[0][s][j+2]=Max(dp[0][s][j+2],dp[0][t][k]+dp[0][s][j-k]);//从s出发,要回到s,需要多走两步s-t,t-s,分配给t子树k步,其他子树j-k步,都返回
dp[1][s][j+2]=Max(dp[1][s][j+2],dp[0][t][k]+dp[1][s][j-k]);//不回到s(去s的其他子树),在t子树返回,同样有多出两步
dp[1][s][j+1]=Max(dp[1][s][j+1],dp[1][t][k]+dp[0][s][j-k]);//先遍历s的其他子树,回到s,遍历t子树,在当前子树t不返回,多走一步

#include<stdio.h>
int vist[105],node[105][105],len[105],val[105],step;
int dp[2][105][205];//dp[1][p][k]表示用k步(k仅仅只用于以节点p为根的子树,不包含从p的父节点走到p的步数)(最终)人还在节点p(根节点是相对于子节点而言)
int max(int a,int b)
{
    return a>b?a:b;
}
void dfs(int p)
{
    for(int i=0;i<=step;i++)//注意从0开始
    dp[0][p][i]=dp[1][p][i]=val[p];
    vist[p]=1;
    for(int i=1;i<=len[p];i++)
    {
        int son=node[p][i];
        if(vist[son])continue;
        dfs(son);

        for(int s=step;s>=1;s--)//以p为根的子树固定步数s
        for(int st=0;st<=s-1;st++)//子节点(树)的步数st
        {
            if(s-st-2>=0)
           {
               dp[1][p][s]=max(dp[1][p][s],dp[1][p][s-st-2]+dp[1][son][st]);
               dp[0][p][s]=max(dp[0][p][s],dp[0][p][s-(st+2)]+dp[1][son][st]);//(st+2)表示的是能从p到son,并从son到p
           //(这里面减2是为了保证连续性,)遍历了son以前的子节点中其中一个没有反回根节点,但必须保证能从son节点反回根节点p,所以最终没回到p
           }
           dp[0][p][s]=max(dp[0][p][s],dp[1][p][s-st-1]+dp[0][son][st]);//同样要保证连续性,跟上述同理
        }

    }
}
int main()
{
    int n,a,b,max;
    while(scanf("%d%d",&n,&step)>0)
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&val[i]);
            len[i]=0,vist[i]=0;
        }
        for(int i=1;i<n;i++)
        {
            scanf("%d%d",&a,&b);
            len[a]++; node[a][len[a]]=b;
            len[b]++; node[b][len[b]]=a;
        }
        dfs(1);
        max=dp[0][1][step];
        if(max<dp[1][1][step])
        max=dp[1][1][step];

        printf("%d\n",max);
    }
}

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<stack>
#include<set>
#include<map>
#include<queue>
#include<algorithm>
using namespace std;
vector<int>g[1010];
int dp[2][1010][210];
int n,V,val[1010];
bool used[1010];
void Max(int &a,int b){
    if(a<b)
        a=b;
}
void dfs(int s){
    int i;
    used[s]=true;
    for(i=0;i<=V;i++){
        dp[0][s][i]=dp[1][s][i]=val[s];
    }
    for(i=0;i<g[s].size();i++){
        int t=g[s][i];
        if(used[t])continue;
        dfs(t);
        for(int j=V;j>=0;j--){
            for(int k=0;k<=j;k++){
                Max(dp[0][s][j+2],dp[0][t][k]+dp[0][s][j-k]);
                Max(dp[1][s][j+2],dp[0][t][k]+dp[1][s][j-k]);
                Max(dp[1][s][j+1],dp[1][t][k]+dp[0][s][j-k]);
            }
        }
    }
}
int main(){
    int i,a,b;
    while(~scanf("%d %d",&n,&V)){
        for(i=0;i<=1000;i++)
            g[i].clear();
        for(i=1;i<=n;i++)
            scanf("%d",&val[i]);
        for(i=0;i<n-1;i++){
            scanf("%d%d",&a,&b);
            g[a].push_back(b);
            g[b].push_back(a);
        }
        memset(dp,0,sizeof(dp));
        memset(used,false,sizeof(used));
        dfs(1);
        printf("%d\n",dp[1][1][V]);
    }
    return 0;
}

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<stack>
#include<set>
#include<map>
#include<queue>
#include<algorithm>
using namespace std;
struct node{
    int u,v,val,next;
}tree[505];
int dp[205][405][2],head[205],val[205];
int len,n,k;
void add(int u,int v){
    tree[len].u=u;
    tree[len].v=v;
    tree[len].next=head[u];
    head[u]=len++;
}
void dfs(int root,int mark){
    int i,j,t,son;
    for(i=head[root];i!=-1;i=tree[i].next){
        son=tree[i].v;
        if(son==mark)
            continue;
        dfs(son,root);
        for(j=k;j>=1;j--){
            for(t=1;t<=j;t++){
                dp[root][j][0]=max(dp[root][j][0],dp[root][j-t][1]+dp[son][t-1][0]);
                dp[root][j][0]=max(dp[root][j][0],dp[root][j-t][0]+dp[son][t-2][1]);
                dp[root][j][1]=max(dp[root][j][1],dp[root][j-t][1]+dp[son][t-2][1]);
            }
        }
    }
}
int main(){
    int i,j,a,b;
    while(~scanf("%d %d",&n,&k)){
        memset(dp,0,sizeof(dp));
        memset(head,-1,sizeof(head));
        for(i=1;i<=n;i++){
            scanf("%d",&val[i]);
            for(j=0;j<=k;j++){
                dp[i][j][0]=dp[i][j][1]=val[i];
            }
        }
        len=0;
        for(i=1;i<n;i++){
            scanf("%d %d",&a,&b);
            add(a,b);
            add(b,a);
        }
        dfs(1,0);
        printf("%d\n",max(dp[1][k][0],dp[1][k][1]));
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值