时间限制
100 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
HOU, Qiming
科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式[+-][1-9]”.”[0-9]+E[+-][0-9]+,即数字的整数部分只有1位,小数部分至少有1位,该数字及其指数部分的正负号即使对正数也必定明确给出。
现以科学计数法的格式给出实数A,请编写程序按普通数字表示法输出A,并保证所有有效位都被保留。
输入格式:
每个输入包含1个测试用例,即一个以科学计数法表示的实数A。该数字的存储长度不超过9999字节,且其指数的绝对值不超过9999。
输出格式:
对每个测试用例,在一行中按普通数字表示法输出A,并保证所有有效位都被保留,包括末尾的0。
输入样例1:
+1.23400E-03
输出样例1:
0.00123400
输入样例2:
-1.2E+10
输出样例2:
-12000000000
#include<iostream>
#include<string.h>
#include<vector>
using namespace std;
int main()
{
char a[10050];
cin >> a;
if (a[0] == '-')
{
cout << "-";
}
int n = strlen(a) - 1;
int sum = 0;
int t = 1;
while (a[n] != '+'&&a[n] != '-')
{
sum += t*(a[n] - 48);
t *= 10;
n--;
}
if (a[n] == '-')
{
sum *= -1;
}
t = 0;
if (sum == 0)//E后面没有数字
{
for (int i = 1; i < n - 1; i++)
{
cout << a[i];
}
}
else if (sum<0)
{
sum *= -1;//再变成正数
cout << "0.";
for (int i = 1; i < sum; i++)
{
cout << "0";
}
for (int i = 1; i < n - 1; i++)
{
if (a[i] != '.')
{
cout << a[i];//输出所有原来的数字
}
}
}
else
{
for (int i = 1; i < n - 1; i++)
{
if (a[i] != '.')
{
cout << a[i];
t++;//记录移动的位数
}
if ((t - 1 == sum) && (t != n - 3))// //(t != n - 3))不加这个会在最后多输出一个点例如 123. 为什么是n-3 ,因为 n是E在所在的位置,但是t的计数是指的除了+ . E之外的,一般的规范的数字肯定是3个(+/- . E)所以减3
{
cout << ".";
}
}
while ((t <= sum))
{
cout << "0";
t++;
}
}
return 0;
}