hashmap并发情况下的成环原因

本文深入探讨了HashMap在并发场景下的线程安全性问题,特别是在数据迁移过程中可能出现的链表成环现象,导致get操作死循环。文章详细分析了问题产生的原因,并提出了几种解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hashmap是一个非线程安全的集合。

他的线程不安全出现在,并发情况下可能会出现链表成环的问题,导致程序在执行get操作时形成死循环。

hashmap成环原因的代码出现在transfer代码中,也就是扩容之后的数据迁移部分,代码如下:

void transfer(Entry[] newTable, boolean rehash) {
    int newCapacity = newTable.length;
    for (Entry<K,V> e : table) {
        while(null != e) {
            Entry<K,V> next = e.next;
            if (rehash) {
                e.hash = null == e.key ? 0 : hash(e.key);
            }
            int i = indexFor(e.hash, newCapacity);
            e.next = newTable[i];
            newTable[i] = e;
            e = next;
        }
    }
}

解释一下transfer的过程:

首先获取新表的长度,之后遍历新表的每一个entry,然后每个ertry中的链表,以反转的形式,形成rehash之后的链表。

并发问题:

若当前线程此时获得ertry节点,但是被线程中断无法继续执行,此时线程二进入transfer函数,并把函数顺利执行,此时新表中的某个位置有了节点,之后线程一获得执行权继续执行,因为并发transfer,所以两者都是扩容的同一个链表,当线程一执行到e.next = new table[i] 的时候,由于线程二之前数据迁移的原因导致此时new table[i] 上就有ertry存在,所以线程一执行的时候,会将next节点,设置为自己,导致自己互相使用next引用对方,因此产生链表,导致死循环。

解决问题:

使用synchronize ,或者使用collection.synchronizeXXX方法。或者使用concurrentHashmap来解决。

<think>嗯,用户想了解HashMap的应用场景和实现原理。首先,我需要回忆一下HashMap的基本结构。记得HashMap是基于哈希表实现的,主干是一个Entry数组,每个Entry包含键值对,引用[2]提到过这个。哈希表通过计算键的哈希值来快速定位存储位置,这样可以实现高效的查找、插入和删除操作。 接下来是应用场景。用户可能需要知道在什么情况下使用HashMap比较合适。比如缓存数据,因为快速存取;统计频率,因为键的唯一性;还有去重操作。这些场景都需要快速的查找能力,而HashMap的O(1)时间复杂度很合适。 然后是实现原理部分。哈希函数的设计很重要,引用[5]提到位运算比模运算高效,所以HashMap中可能用到了位运算来计算索引。处理哈希冲突的方法,比如链地址法,当多个键哈希到同一个位置时,用链表或红黑树存储。扩容机制方面,负载因子默认0.75,超过阈值会扩容,引用[3]有说明。扩容后要重新计算哈希,可能影响性能。 还要考虑线程安全的问题,HashMap不是线程安全的,可以用ConcurrentHashMap替代。源码分析部分,可以提到put方法的流程,包括计算哈希、处理冲突、扩容等步骤。引用[4]提到重写equals和hashCode的必要性,这点很重要,否则会影响HashMap的正确性。 用户可能还想知道为什么负载因子是0.75,或者哈希冲突的解决方法除了链表还有什么。不过根据问题,主要需要覆盖应用场景和实现原理,可能还需要比较其他数据结构,比如HashTable或TreeMap的区别。 总结一下,回答需要分两部分:应用场景和实现原理,结合引用中的信息,确保准确引用来源。同时,生成的相关问题要引导用户进一步学习,比如优化方法或线程安全的替代方案。</think>### HashMap的应用场景及实现原理分步解析 --- #### 一、HashMap的应用场景 1. **快速存取键值对** HashMap通过哈希函数直接计算键的存储位置,时间复杂度接近$O(1)$,适合高频次查询场景。例如: - 缓存数据(如用户会话信息) - 统计词频(如统计文章中单词出现次数) - 数据去重(利用键的唯一性) 2. **无需有序存储的场景** HashMap不保证遍历顺序与插入顺序一致,适合对顺序无要求的场景,例如: - 数据库查询结果临时存储 - 配置文件解析为键值对集合 3. **替代简单关系型数据库查询** 对于小规模数据,可用HashMap实现类似“内存数据库”的功能,例如: ```java Map<Integer, User> userCache = new HashMap<>(); userCache.put(userId, userObject); // 快速通过userId获取用户对象 ``` --- #### 二、HashMap的实现原理 ##### 1. **数据结构** - **主干结构**:Entry数组(JDK8后改为Node数组),每个节点存储键值对[^2] ```java static class Node<K,V> implements Map.Entry<K,V> { final int hash; // 哈希值 final K key; V value; Node<K,V> next; // 链表指针 } ``` - **哈希冲突解决**:链地址法(链表) + 红黑树(JDK8优化) - 当链表长度超过8时,转为红黑树(时间复杂度从$O(n)$降为$O(\log n)$) ##### 2. **核心机制** - **哈希函数** 通过键的`hashCode()`计算哈希值,再通过位运算确定数组下标: $$ \text{index} = (n - 1) \& \text{hash} $$ 其中$n$为数组长度(始终为2的幂),位运算(&)替代模运算提升效率[^5] - **扩容机制** - 默认负载因子(loadFactor)为0.75[^3] - 扩容条件:元素数量 > 数组长度 × loadFactor - 扩容操作:新建2倍大小的数组,重新哈希所有元素 ##### 3. **线程安全问题** - **非线程安全**:多线程并发修改可能导致链表成环或数据丢失 - **替代方案**:使用`ConcurrentHashMap`或`Collections.synchronizedMap()` --- #### 三、源码级实现分析(以JDK8为例) 1. **put方法流程** ```java public V put(K key, V value) { // 1. 计算哈希值 int hash = hash(key); // 2. 计算数组下标 int i = (n - 1) & hash; // 3. 处理哈希冲突(链表/红黑树) if (table[i] == null) { table[i] = newNode(hash, key, value, null); } else { // ...遍历链表或树 } // 4. 检查扩容 if (++size > threshold) resize(); } ``` 2. **重写equals和hashCode** 必须同时重写这两个方法以保证逻辑一致性[^4],例如: ```java public class Key { private int id; @Override public int hashCode() { return Objects.hash(id); } @Override public boolean equals(Object o) { /* 比较id字段 */ } } ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值