原题:HDU-1512
大意:有n只猴子,两只猴子闹矛盾,分别派出两批猴子中最强壮的猴子打架,各自损失一半生命值,打完之后成一波,问每次打完最强壮的猴子的血量。
最开始用优先队列做的,n只猴子就n个优先队列,每次从队首取最强壮的猴子,打完之后再插进去,然后直接将两个优先队列合并就OK了,然后就...超内存了....
后来在网上看用左偏树做,第一次听说...日狗...
大致总结一下左偏树(此题取的是最大值,所以按最大值总结,当然最小值的话把 < 改成 > 就好了
1、左偏树的节点的值大于左右子节点的值 所以根节点的值是最大的,每次取一个左偏树的最大值只要取根节点就OK了
2、左偏树除了左右儿子、值还有一个距离参数dis,这个距离参数表示这个节点到外节点经历的边的数目,啥叫外节点呢?外节点就是没有左儿子或者没有右儿子的节点,
叶子节点不属于外节点。在一颗左偏树中,左儿子的距离要大于等于右儿子的距离。
3、外节点的距离为1,叶子节点的距离为0,空节点的距离为-1。其它节点的距离等于右儿子的距离+1。
4、左偏树的插入
然后这个题目就很好做了,每只猴子最开始都是一颗左偏树,打架的时候取出根节点,打完插回去再合并一下就OK了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
struct node {
int l,r,v,dis;
} mon[100005];
int pre[100005];
int n;
int find(int t){
int i=t,j;
while(t!=pre[t])t=pre[t];
while(i!=t){
j=pre[i];
pre[i]=t;
i=j;
}
return t;
}
int insert(int i,int j){
if(i==0)return j;
if(j==0)return i;
if(mon[i].v<mon[j].v)swap(i,j);
mon[i].r=insert(mon[i].r,j);
pre[mon[i].r]=i;
if(mon[mon[i].l].dis<mon[mon[i].r].dis)
swap(mon[i].l,mon[i].r);
if(mon[i].r)
mon[i].dis=mon[mon[i].r].dis+1;
else
mon[i].dis=0;
return i;
}
int pop(int i){
int x=mon[i].l,y=mon[i].r;
pre[x]=x;
pre[y]=y;
mon[i].l=mon[i].r=mon[i].dis=0;
return insert(x,y);
}
int main() {
while(cin>>n) {
for(int i=1; i<=n; i++) {
cin>>mon[i].v;
mon[i].l=mon[i].r=mon[i].dis=0;
pre[i]=i;
}
cin>>n;
int x,y;
for(int i=1;i<=n;i++){
cin>>x>>y;
int m1=find(x),m2=find(y);
if(m1==m2){
cout<<"-1"<<endl;
continue ;
}
int mm1=pop(m1);
mon[m1].v/=2;
mm1=insert(mm1,m1);
int mm2=pop(m2);
mon[m2].v/=2;
mm2=insert(mm2,m2);
cout<<mon[insert(mm1,mm2)].v<<endl;
}
}
return 0;
}