形如a+bi(a、b均为实数)的数为复数,其中,a被称为实部,b被称为虚部,i为虚数单位。复数通常用z表示,即z=a+bi,当z的虚部b=0时,则z为实数;当z的虚部b≠0时,实部a=0时,常称z为纯虚数。复数的基本运算包括加法、减法、乘法、除法和共轭,下面是这些运算的简单说明:
-
加法:
如果有两个复数 ( z 1 = a + b i ) ( z_1 = a + bi ) (z1=a+bi) 和 ( z 2 = c + d i ) ( z_2 = c + di ) (z2=c+di),它们相加的结果是将实部与实部相加,虚部与虚部相加:
z 1 + z 2 = ( a + c ) + ( b + d ) i z_1 + z_2 = (a + c) + (b + d)i z1+z2=(a+c)+(b+d)i -
减法:
类似于加法,两个复数相减是将一个复数的实部与另一个复数的实部相减,虚部与虚部相减:
z 1 − z 2 = ( a − c ) + ( b − d ) i z_1 - z_2 = (a - c) + (b - d)i z1−z2=(a−c)+(b−d)i -
乘法:
两个复数相乘遵循分配律,并且记住 ( i 2 = − 1 ) ( i^2 = -1 ) (i2=−1):
z 1 ⋅ z 2 = ( a c − b d ) + ( a d + b c ) i z_1 \cdot z_2 = (ac - bd) + (ad + bc)i z1⋅z2=(ac−bd)+(ad+bc)i -
除法:
两个复数相除通常需要将分母转换为实数(即通过乘以分母的共轭),然后进行分子分母的分别计算。如果 ( z 2 ≠ 0 ) ( z_2 \neq 0 ) (z2=0),则有:
z 1 z 2 = a + b i c + d i = ( a + b i ) ( c − d i ) ( c + d i ) ( c − d i ) = ( a c + b d ) + ( b c − a d ) i c 2 + d 2 \frac{z_1}{z_2} = \frac{a + bi}{c + di} = \frac{(a + bi)(c - di)}{(c + di)(c - di)} = \frac{(ac + bd) + (bc - ad)i}{c^2 + d^2} z2z1=c+dia+bi=(c+di)(c−di)(a+bi)(c−di)=c2+d2(ac+bd)+(bc−ad)i -
共轭:
复数的共轭是指改变复数中虚部的符号,若有一个复数 ( z = a + b i ) ( z = a + bi ) (z=a+bi),它的共轭记作 ( z ˉ ) ( \bar{z} ) (zˉ) 或 ( z^* ),写作 ( z ˉ = a − b i ) ( \bar{z} = a - bi ) (zˉ=a−bi)。共轭在计算复数的模以及执行除法时非常有用。
此外,还有复数的模(绝对值)、辐角等概念,它们对于理解复数的几何意义非常重要。复数的模表示复数到原点的距离,而辐角则是从正实轴到复数所代表的向量之间的角度。