深度学习
文章平均质量分 94
笨拙的石头
目前主要研究机器学习领域,希望和大家一起学习,多多交流!!!
展开
-
深度学习概述
一.深度学习概述原创 2018-05-14 09:31:02 · 7671 阅读 · 1 评论 -
深度学习之BP算法
作为深度学习领域的破冰之作,BP神经网络重新燃起了人们对深度学习的热情.它解决了DNN中的隐层传递中的权重值的计算问题.那么,BP算法思想是什么?它又是如何实现的呢?这就是本节的研究内容.一.BP算法的提出及其算法思想 神经网络主要是由三个部分组成的,分别是:1) 网络架构 2) 激活函数 3) 找出最优权重值的参数学习算法. BP算法就是目前使用较为广泛的一种参数学习算...原创 2018-05-14 21:43:19 · 97210 阅读 · 16 评论 -
深度学习之RNN(循环神经网络)
一 RNN概述 前面我们叙述了BP算法, CNN算法, 那么为什么还会有RNN呢?? 什么是RNN, 它到底有什么不同之处? RNN的主要应用领域有哪些呢?这些都是要讨论的问题. 1) BP算法,CNN之后, 为什么还有RNN? 细想BP算法,CNN(卷积神经网络)我们会发现, 他们的输出都是只考虑前一个输入的影响而不考虑其它时刻输入的影响, 比如简单的猫,狗,手写数...原创 2018-05-28 20:49:09 · 248450 阅读 · 26 评论 -
深度学习之卷积神经网络(Convolutional Neural Networks, CNN)(一)
前面, 我们介绍了DNN及其参数求解的方法(BP算法),我们知道了DNN仍然存在很多的问题,其中最主要的就是BP求解可能造成的梯度消失和梯度爆炸的问题.那么,人们又是怎么解决这个问题的呢?本节的卷积神经网络(Convolutional Neural Networks, CNN)就是一种解决方法. 我们知道神经网络主要有三个部分组成, 分别为: ① 网络结构--- 描述...原创 2018-05-16 21:15:33 · 28249 阅读 · 0 评论 -
深度学习之卷积神经网络(Convolutional Neural Networks, CNN)(二)
前面我们说了CNN的一般层次结构及其每个层的作用等内容. 这一节将在前一节的内容的基础上, 讨论CNN中的参数初始化, CNN过拟合的处理方法, 参数学习的方法, CNN的优缺点等内容.一 CNN参数初始化...原创 2018-05-28 09:39:22 · 4832 阅读 · 0 评论 -
深度学习之目标检测与目标识别
本文主要讲述了目标识别中的第一种类型---基于region proposal的目标检测和目标识别的算法, 主要主要包括R-CNN,Fast R-CNN,Faster R-CNN等网络, 揭示了基于region proposal的目标检测和目标识别的算法的发展历程.此外,在开头还简要叙述了目标识别的分类及其应用的主要场景.原创 2018-06-05 21:58:54 · 60400 阅读 · 2 评论