深度学习之卷积神经网络(Convolutional Neural Networks, CNN)(一)

本文介绍了卷积神经网络(CNN)的应用领域,如图像处理和视频处理,并详细阐述了CNN的网络结构,包括局部感知、参数共享、ReLU激活层、池化层和全连接层,以及其优缺点。CNN通过解决传统神经网络的梯度消失和爆炸问题,提高了对大规模数据处理的能力。
摘要由CSDN通过智能技术生成

    前面, 我们介绍了DNN及其参数求解的方法(BP算法),我们知道了DNN仍然存在很多的问题,其中最主要的就是BP求解可能造成的梯度消失梯度爆炸的问题.那么,人们又是怎么解决这个问题的呢?本节的卷积神经网络(Convolutional Neural Networks, CNN)就是一种解决方法.

    我们知道神经网络主要有三个部分组成, 分别为: 

    ① 网络结构--- 描述神经元的层次与连接神经元的结构.

    ② 激活函数(激励函数)--- 用于加入非线性的因素解决线性模型所不能解决的问题.

    ③ 参数学习方法的选择(一般为权重值W和偏置项b)---如BP算法等.

    我们将主要从这几个方面进行讲述.

一 CNN的应用领域

    CNN在以下几个领域均有不同程度的应用:

    ① 图像处理领域(最主要运用领域)--- 图像识别物体识别,图像标注,图像主题生成,图像内容生成,物体标注等。

    ② 视频处理领域--- 视频分类,视频标准,视频预测等

    ③ 自然语言处理(NLP)领域--- 对话生成,文本生成,机器翻译等
    ④ 其它方面--- 机器人控制,游戏,参数控制等

二 CNN的网络结构

    2.1 从传统神经网络到CNN

                

                                                                        图2.1 传统的神经网络的结构

           

                                                                                 图2.2 CNN的网络结构

    如图2.1为传统

卷积神经网络Convolutional Neural NetworksCNN)是一种强大的深度学习算法,主要用于图像识别和处理。CNN的结构图主要包括卷积层、激活函数、池化层和全连接层。 卷积层是CNN的核心组成部分,由多个卷积核组成。每个卷积核在图像上进行滑动操作,通过计算卷积操作得到新的特征图。卷积操作可以提取出图像的局部特征,并保留了空间结构信息。 在卷积层之后,激活函数(如ReLU)被应用于特征图中的每个元素,以引入非线性。激活函数可以增加网络的表达能力,并促使网络学习更复杂的特征。 池化层用于减少特征图的维度,它通过将特定区域内的特征值进行聚合,并选择最显著的特征进行保留。常用的池化操作包括最大池化和平均池化。池化层可以减少特征图的大小,从而降低参数数量,减小计算量。 最后,全连接层将池化层输出的特征图转换为向量形式,并连接到输出层。全连接层的作用是对特征进行分类或回归预测。它们通常由全连接神经元组成,每个神经元与上一层的所有神经元相连。 在CNN的结构图中,卷积层和池化层可以多次堆叠,以增加网络的深度。这种多层次的结构可以使网络学习到更高级别的抽象特征。此外,CNN还可以通过添加批量归一化、dropout等技术来提高网络的性能和泛化能力。 总之,CNN的结构图展示了卷积神经网络的层次组织和数据流动方式,有助于理解其工作原理和网络结构的设计。通过逐层堆叠不同的层,CNN可以有效地提取图像中的特征,并在分类、目标检测等任务中取得优秀的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值