奇妙的数学 · 完全平方数~总结

这篇博客详细介绍了完全平方数的定义、几何意义、表达式和各种性质,包括平方数的个位数、十位数规律,以及关于平方数的多位数模式。文章通过证明和例子阐述了完全平方数的判断规则,并提供了多个重要结论帮助识别非完全平方数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明

定义

数学上,平方数,或称完全平方数,是指可以写成某个整数的平方的数,即其平方根为整数的数。例如, 729=27×27 ,它是一个平方数。

几何意义

平方数也称正方形数,若 n 为平方数,将 n 个点排成 矩形,可以排成一个正方形。

扩大范围

若将平方数概念扩展到有理数,则两个平方数的比仍 然是平方数,例如, (2×2)(3×3)=49=23×23

平方数因数

若一个整数没有除了 1 之外的平方数为其因数,则称 其为无平方数因数的数。


表达式

几何

一个整数是完全平方数当且仅当相同数目的点能够在平面上排成一个正方形的点阵,使得每行每列的点都一样多。

正方形数

通项公式

对于一个整数 n,它的平方写成 n2 n2 等于头 n 个正奇数的和(

n2=k=1n(2k1)
)。在上图中,从1开始,第
n 个平方数表示为前一个平方数加上第 n 个正奇数,如 52=25=1+3+5+7+9=16+9 。即第五个平方数 25 等于第四个平方数 16 加上第五个正奇数: 9

递归公式

每个平方数可以从之前的两个平方数计算得到,递推公式为

n2=2(n1)2(n2)2+2

例如,
2×5242+2=2×2516+2=5016+2=36=62

连续整数的和

平方数还可以表示成 n2=1+1+2+2+...+n1+n1+n 。例如, 42=16=1+1+2+2+3+3+4 。可 以将其解释为在边长为 3 的矩形上添加宽度为

<think>好的,用户需要寻找用Solidity编写的判断完全平方数的代码示例。首先,我得回忆一下Solidity的语法和数学运算的限制。Solidity不支持浮点数运算,所以不能直接用平方根函数然后检查是否为整数。那怎么办呢? 通常判断完全平方数的方法是通过计算平方根然后取整,再平方看是否等于原数。在Solidity中,可以使用二分查找法或者牛顿法来近似计算平方根,然后验证。例如,牛顿法是一种迭代方法,可以高效地找到平方根的近似值。 接下来要考虑的是如何处理大整数,避免溢出。因为Solidity的uint类型有最大值,需要确保计算过程中不会超出范围。可能需要使用SafeMath库或者手动检查溢出。 然后,我需要参考现有的实现。比如,OpenZeppelin的Math库中有sqrt函数,可能可以用来实现这个功能。查找相关资料,发现有人用二分法实现平方根函数,然后进行验证。 代码的大致步骤应该是:实现一个平方根函数,返回整数部分,然后将结果平方与原数比较。如果相等,则是完全平方数。 需要注意的是,输入的数值可能很大,所以平方根函数的效率很重要。二分法在较大的数值下可能需要较多迭代,而牛顿法可能更快,但实现起来稍微复杂。 现在开始编写代码。首先定义函数isPerfectSquare,接收一个uint256参数n。如果n是0或1,直接返回true。否则,使用二分法找到平方根的整数部分。初始化low为0,high为n。循环直到low <= high,计算mid,然后比较mid的平方与n的大小。需要注意mid的平方可能会溢出,所以需要先检查mid是否超过sqrt(max uint256),或者使用SafeMath的乘法。 不过,Solidity 0.8.x之后内置了溢出检查,所以可能不需要SafeMath。但计算mid的平方时,如果mid太大,会导致溢出,所以应该在计算平方之前判断mid是否超过sqrt(n),或者使用更安全的方式。 例如,在二分法中,当mid > n/mid时,说明mid的平方超过了n,所以调整high。最终得到的low-1可能是平方根的整数部分。然后验证(low-1)^2是否等于n,或者low^2是否等于n,具体取决于循环结束的条件。 或者,另一种方法是使用牛顿法来计算平方根。牛顿法的迭代公式是x_{k+1} = (x_k + n / x_k) / 2,直到收敛。同样,取最后的x,检查x*x是否等于n。 不过,牛顿法可能需要处理除数为零的情况,所以初始猜测值需要合理。比如,初始值可以设为n本身,然后迭代下去。 现在,我需要比较二分法和牛顿法在Solidity中的实现难度和Gas消耗。通常,牛顿法收敛更快,但可能需要更复杂的计算步骤。而二分法虽然步骤多,但实现起来更直观。 综合考虑,可能采用二分法更稳妥,避免迭代过程中的复杂情况。编写一个内部函数来计算平方根,然后在isPerfectSquare中调用这个函数,并验证平方是否等于原数。 另外,需要处理n=0和n=1的特殊情况,因为它们的平方根就是自身,可以直接返回true。 现在,编写代码示例: function isPerfectSquare(uint256 n) public pure returns (bool) { if (n == 0 || n == 1) { return true; } uint256 low = 1; uint256 high = n; while (low <= high) { uint256 mid = (low + high) / 2; uint256 square = mid * mid; if (square == n) { return true; } else if (square < n) { low = mid + 1; } else { high = mid - 1; } } return false; } 不过,这里可能存在一个问题:当mid很大时,mid * mid可能会溢出,导致错误的结果。例如,当n接近2^256-1时,mid可能超过2^128,导致乘积溢出。Solidity 0.8.x之后会自动检查溢出,导致panic错误,所以需要防止这种情况。 解决方法是在计算mid * mid之前,先判断mid是否超过n的平方根的最大可能值。或者,在计算平方前,比较mid和n / mid的大小。例如,如果mid > n / mid,说明mid的平方已经大于n,此时可以调整high。这样可以避免溢出,因为n/mid的结果会比mid小,不会导致乘法溢出。 修改后的二分法实现可能如下: function isPerfectSquare(uint256 n) public pure returns (bool) { if (n == 0 || n == 1) { return true; } uint256 low = 1; uint256 high = n; while (low <= high) { uint256 mid = (low + high) / 2; if (mid <= n / mid) { // 防止溢出 uint256 square = mid * mid; if (square == n) { return true; } else if (square < n) { low = mid + 1; } else { high = mid - 1; } } else { high = mid - 1; } } return false; } 这样处理可以避免在计算平方时溢出,因为当mid > n/mid时,mid的平方必然大于n,所以不需要计算平方,直接调整high即可。 测试一些数值,比如n=4,应该返回true;n=2,返回false;n=25,返回true。这种情况下应该正确。 此外,还可以参考OpenZeppelin的Math库中的sqrt函数,它使用了一种牛顿法的实现,可能更高效。例如: function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 result = 1 << (log2(a) >> 1); unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } 然后,用sqrt函数计算平方根,再检查平方是否等于原数: function isPerfectSquare(uint256 n) public pure returns (bool) { if (n == 0) { return true; } uint256 sqrtN = sqrt(n); return sqrtN * sqrtN == n; } 不过,这种方法需要确保sqrt函数返回的是精确的平方根。例如,当n不是完全平方数时,sqrt函数返回的是向下取整的结果,此时平方会小于n。因此,上面的代码可能有效。 但需要注意,sqrt函数的实现是否精确。例如,OpenZeppelin的sqrt函数返回的是floor(sqrt(n)),所以只有当sqrtN * sqrtN == n时,才是完全平方数。 因此,结合现有的sqrt函数实现,可以更高效地完成判断。这可能比二分法更节省Gas,尤其是在大数值的情况下。 总结来说,用户需要的是一个Solidity函数,判断一个数是否为完全平方数。可以采用二分法或利用现有的平方根函数。考虑到Gas效率和代码简洁,使用优化过的牛顿法实现sqrt函数可能更好。例如,结合OpenZeppelin的Math库中的方法,然后进行验证。 因此,最终的代码示例可能如下: // 导入OpenZeppelin的Math库,或者自行实现sqrt函数 import "@openzeppelin/contracts/utils/math/Math.sol"; contract PerfectSquareChecker { using Math for uint256; function isPerfectSquare(uint256 n) public pure returns (bool) { if (n == 0) { return true; } uint256 sqrtN = Math.sqrt(n); return sqrtN * sqrtN == n; } } 但需要确认Math.sqrt的实现是否准确。如果用户无法导入OpenZeppelin库,可能需要自行实现sqrt函数。例如,使用牛顿法的简化版本: function sqrt(uint256 x) internal pure returns (uint256) { if (x == 0) return 0; uint256 z = (x + 1) / 2; uint256 y = x; while (z < y) { y = z; z = (x / z + z) / 2; } return y; } 然后,同样检查y*y ==x。 不过,在Solidity中实现精确的平方根并验证可能需要更多的测试,但大致思路是正确的。 因此,最终的Solidity代码示例如下: pragma solidity ^0.8.0; contract PerfectSquare { function isPerfectSquare(uint256 n) public pure returns (bool) { if (n == 0) { return true; } uint256 sqrtN = sqrt(n); return sqrtN * sqrtN == n; } function sqrt(uint256 x) internal pure returns (uint256) { if (x == 0) return 0; uint256 result = x; uint256 iterations = 0; while (true) { iterations++; uint256 next = (result + x / result) >> 1; if (next >= result) { break; } result = next; } return result; } } 这里sqrt函数使用牛顿法,直到收敛到整数平方根。然后检查平方是否等于原数。 总结,用户需要的是判断完全平方数的Solidity代码,核心是计算平方根并验证。需要注意的是处理溢出和效率问题,以及确保正确性。</think>以下是用Solidity编写的判断完全平方数的代码示例: ```solidity pragma solidity ^0.8.0; contract PerfectSquareChecker { function isPerfectSquare(uint256 n) public pure returns (bool) { if (n == 0) return true; uint256 low = 1; uint256 high = n; while (low <= high) { uint256 mid = (low + high) >> 1; // 等价于(low + high)/2 uint256 square = mid * mid; if (square
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值