目标识别与检测相关概念

本文详细介绍了目标分割、目标检测、目标识别和目标跟踪的概念,并探讨了目标识别的预处理、特征提取、建模和匹配等过程。强调了颜色、纹理、形状和空间特征在识别中的作用,并提到了TensorFlow在目标识别中的应用,特别是使用CNN模型进行图像分类。
摘要由CSDN通过智能技术生成

一. 明确几个概念:

1. 目标分割(Target Segmentation):任务是把目标对应部分分割出来。

像素级的前景与背景的分类问题,将背景剔除。

举例:(以对视频中的小明同学进行跟踪为例,列举处理过程)

第一步进行目标分割,采集第一帧视频图像,因为人脸部的肤色偏黄,因此可以通过颜色特征将人脸与背景分割出来。

2. 目标检测(Target Detection):

定位目标,确定目标位置和大小。检测目标的有无。

检测有明确目的性,需要检测什么就去获取样本,然后训练得到模型,最后直接去图像上进行匹配,其实也是识别的过程。

举例:第二步进行目标识别,分割出来后的图像有可能不仅仅包含人脸,可能还有部分环境中颜色也偏黄的物体,此时可以通过一定的形状特征将图像中所有的人脸准确找出来,确定其位置及范围。

 3.目标识别(Target Recognition):定性目标,确定目标的具体模式(类别)。

举例:第三步进行目标识别,将图像中的所有人脸与小明的人脸特征进行对比,找到匹配度最好的,从而确定哪个是小明。

 4.目标跟踪(Target Tracking):追踪目标运动轨迹。

举例:第四步进行目标跟踪,之后的每一帧就不需要像第一帧那样在全图中对小明进行检测,而是可以根据小明的运动轨迹建立运动模型,通过模型对下一帧小明的位置进行预测,从而提升跟踪的效率。

 

 二. 目标识别

参考博客; http://blog.csdn.net/liuheng0111/article/details/52348874

 (一)目标识别的任务

识别出图像中有什么物体,并报告出这个物体在图像表示的场景中的位置和方向。对一个给定的图片进行目标识别,首先

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值