题目描述
给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。
字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,“ACE” 是 “ABCDE” 的一个子序列,而 “AEC” 不是)
题目数据保证答案符合 32 位带符号整数范围。
思路
二维数组
因为该问题输入为两个字符串,所以状态方程需要两个变量。设 f(i, j) 表示字符串 s 下标从 0 到 i 的子字符串 s[0] ~ s[i] 中等于字符串 t 下标从 0 到 j 的子字符串 t[0] ~ t[j] 的子序列个数。因为若字符串 s 的长度小于字符串 t,那么字符串 s 中肯定不可能存在子字符串使其等于字符串 t,所以当 i < j 时 f(i, j) = 0。当 i >= j 时,若 s[i] != t[j] ,那么无法用 s[i] 去匹配 t[i] 则需要舍去 s[i],可以得到 f(i, j) = f(i - 1, j), 表示 s[0] ~ s[i] 中与 t[0] ~ t[j] 相等的子序列个数与s[0] ~ s[i - 1] 中与 t[0] ~ t[j] 相等的子序列个数相同。若 s[i] == t[j],则既可以舍去 s[i] 不进行匹配也可以使用 s[i] 与 t[j] 进行匹配,可以得到 f(i, j) = f(i - 1, j) + f(i - 1, j - 1),f(i - 1, j) 表示不进行匹配时的个数,f(i - 1, j - 1) 表示进行匹配的个数,其值代表字符串 s[0] ~ s[i - 1] 中与字符串 t[0] ~ t[j - 1] 相等的子序列个数。故转移方程可以总结为:
上式成立的条件都是 i >= j,另外 f(i, -1) 表示字符串 s[0] ~ s[i] 中与空字符串相等的子序列个数,所以 f(i, -1) = 1,f(i, -1) 表示空字符串中与字符串 t[0] ~ t[j] 相等的子序列个数,所以 j > 0 时 f(-1 ,j) = 0。以 s = “appplep”, t = “apple” 为例子二维 DP 矩阵如下图
若 s 和 t 的长度分别为 m 和 n,那么时间复杂度为 O(mn),空间复杂度为 O(mn)。
一维数组正序
考虑遍历到如图的标星处
可以发现当前的值只与标红处的值有关,所以可以通过辅助变量把二维数组优化为只需一行的一维数组。完整的代码如下,时间复杂度为 O(mn),空间复杂度为 O(n)。
一维数组逆序
如果改变从左往右的遍历顺序为从右往左的顺序,如下图,那么可以无需使用辅助变量。
时间复杂度为 O(mn),空间复杂度为 O(n)。
三种方案的代码实现如下:
代码实现
class Solution {
public int numDistinct1(String S, String T) {
char[] s = S.toCharArray();
char[] t = T.toCharArray();
// dp[i][j] : s[0..i] T[0...j]
// dp[i][j] : s只拿前i个字符做子序列,有多少个子序列,字面值等于T的前j个字符的前缀串
int[][] dp = new int[s.length + 1][t.length + 1];
// dp[0][0]
// dp[0][j] = s只拿前0个字符做子序列, T前j个字符
for (int j = 0; j <= t.length; j++) {
dp[0][j] = 0;
}
for (int i = 0; i <= s.length; i++) {
dp[i][0] = 1;
}
for (int i = 1; i <= s.length; i++) {
for (int j = 1; j <= t.length; j++) {
dp[i][j] = dp[i - 1][j] + (s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] : 0);
}
}
return dp[s.length][t.length];
}
public int numDistinct2(String S, String T) {
char[] s = S.toCharArray();
char[] t = T.toCharArray();
int[] dp = new int[t.length + 1];
dp[0] = 1;
for (int i = 1; i <= s.length; i++) {
int tmp1 = 1;
int tmp2 = 1;
for (int j = 1; j <= Math.min(t.length, i); j++) {
tmp2 = dp[j];
dp[j] += s[i - 1] == t[j - 1] ? tmp1 : 0;
tmp1 = tmp2;
}
}
return dp[t.length];
}
public int numDistinct3(String S, String T) {
char[] s = S.toCharArray();
char[] t = T.toCharArray();
int[] dp = new int[t.length + 1];
dp[0] = 1;
for (int i = 1; i <= s.length; i++) {
for (int j = Math.min(t.length, i); j >= 1; j--) {
dp[j] += s[i - 1] == t[j - 1] ? dp[j - 1] : 0;
}
}
return dp[t.length];
}
}