子序列的数目

这篇博客介绍了如何使用动态规划解决计算一个字符串中另一字符串子序列出现次数的问题。给出了三种不同的实现方式:二维数组、一维数组正序和一维数组逆序,时间复杂度均为O(mn),空间复杂度分别为O(mn)、O(n)和O(n)。文章通过实例解释了状态转移方程,并提供了相应的代码实现。
摘要由CSDN通过智能技术生成

题目描述

子序列的数目

给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。

字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,“ACE” 是 “ABCDE” 的一个子序列,而 “AEC” 不是)

题目数据保证答案符合 32 位带符号整数范围。

在这里插入图片描述

思路

二维数组

因为该问题输入为两个字符串,所以状态方程需要两个变量。设 f(i, j) 表示字符串 s 下标从 0 到 i 的子字符串 s[0] ~ s[i] 中等于字符串 t 下标从 0 到 j 的子字符串 t[0] ~ t[j] 的子序列个数。因为若字符串 s 的长度小于字符串 t,那么字符串 s 中肯定不可能存在子字符串使其等于字符串 t,所以当 i < j 时 f(i, j) = 0。当 i >= j 时,若 s[i] != t[j] ,那么无法用 s[i] 去匹配 t[i] 则需要舍去 s[i],可以得到 f(i, j) = f(i - 1, j), 表示 s[0] ~ s[i] 中与 t[0] ~ t[j] 相等的子序列个数与s[0] ~ s[i - 1] 中与 t[0] ~ t[j] 相等的子序列个数相同。若 s[i] == t[j],则既可以舍去 s[i] 不进行匹配也可以使用 s[i] 与 t[j] 进行匹配,可以得到 f(i, j) = f(i - 1, j) + f(i - 1, j - 1),f(i - 1, j) 表示不进行匹配时的个数,f(i - 1, j - 1) 表示进行匹配的个数,其值代表字符串 s[0] ~ s[i - 1] 中与字符串 t[0] ~ t[j - 1] 相等的子序列个数。故转移方程可以总结为:
在这里插入图片描述
上式成立的条件都是 i >= j,另外 f(i, -1) 表示字符串 s[0] ~ s[i] 中与空字符串相等的子序列个数,所以 f(i, -1) = 1,f(i, -1) 表示空字符串中与字符串 t[0] ~ t[j] 相等的子序列个数,所以 j > 0 时 f(-1 ,j) = 0。以 s = “appplep”, t = “apple” 为例子二维 DP 矩阵如下图
在这里插入图片描述
若 s 和 t 的长度分别为 m 和 n,那么时间复杂度为 O(mn),空间复杂度为 O(mn)。

一维数组正序

考虑遍历到如图的标星处
在这里插入图片描述

可以发现当前的值只与标红处的值有关,所以可以通过辅助变量把二维数组优化为只需一行的一维数组。完整的代码如下,时间复杂度为 O(mn),空间复杂度为 O(n)。

一维数组逆序

如果改变从左往右的遍历顺序为从右往左的顺序,如下图,那么可以无需使用辅助变量。
在这里插入图片描述
时间复杂度为 O(mn),空间复杂度为 O(n)。

三种方案的代码实现如下:

代码实现

class Solution {
	public int numDistinct1(String S, String T) {
		char[] s = S.toCharArray();
		char[] t = T.toCharArray();
		// dp[i][j] : s[0..i] T[0...j]

		// dp[i][j] : s只拿前i个字符做子序列,有多少个子序列,字面值等于T的前j个字符的前缀串
		int[][] dp = new int[s.length + 1][t.length + 1];
		// dp[0][0]
		// dp[0][j] = s只拿前0个字符做子序列, T前j个字符
		for (int j = 0; j <= t.length; j++) {
			dp[0][j] = 0;
		}
		for (int i = 0; i <= s.length; i++) {
			dp[i][0] = 1;
		}
		for (int i = 1; i <= s.length; i++) {
			for (int j = 1; j <= t.length; j++) {
				dp[i][j] = dp[i - 1][j] + (s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] : 0);
			}
		}
		return dp[s.length][t.length];

    }

    public int numDistinct2(String S, String T) {
        char[] s = S.toCharArray();
		char[] t = T.toCharArray();
		int[] dp = new int[t.length + 1];
		dp[0] = 1;
		
        for (int i = 1; i <= s.length; i++) {
           int tmp1 = 1;
           int tmp2 = 1;
			for (int j = 1; j <= Math.min(t.length, i); j++) {
	               tmp2 = dp[j];
				dp[j] += s[i - 1] == t[j - 1] ? tmp1 : 0;
	               tmp1 = tmp2;
			}
		}
		return dp[t.length];

    }

    public int numDistinct3(String S, String T) {
        char[] s = S.toCharArray();
		char[] t = T.toCharArray();
		int[] dp = new int[t.length + 1];
		dp[0] = 1;
		
		for (int i = 1; i <= s.length; i++) {
			for (int j = Math.min(t.length, i); j >= 1; j--) {
				dp[j] += s[i - 1] == t[j - 1] ? dp[j - 1] : 0;
			}
		}
		return dp[t.length];

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NLP_wendi

谢谢您的支持。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值