推荐系统
文章平均质量分 79
公众号【五元杂货铺】
公众号【五元杂货铺】
知乎【大飞飞飞飞飞】
微信【wuyuanzahuopu】
展开
-
推荐系统----第一章(推荐系统基础概念)
推荐系统评价指标2.1 覆盖率覆盖率描述了一个推荐系统对物品长尾的发掘能力,最简单的覆盖率的定义为推荐系统能够推荐出来的物品占总物品集合的比列。假设系统用户的集合为U,推荐系统为每个用户推荐一个长度为N的物品列表R(u)。那么推荐系统的覆盖率可以通过下面公式计算。2.2 多样性用户的兴趣是广泛的,如果用户的推荐列表比较多样,覆盖了用户绝大多数的兴趣点,那么就会增加用户找到感兴趣物品的概率,多样性描...原创 2018-04-23 14:30:21 · 1984 阅读 · 1 评论 -
推荐系统----第二章(基于领域的算法-基于用户的协同过滤)
基于用户的协调过滤算法但是在该过程计算相似度时,算法的时间复杂度往往会很高,到遇到很大的数据量时会非常的耗时,事实上,很多用户相互之间并没有对同样的物品产生过行为,为此,可以构建一个物品到用户的倒排表,对于每个物品都保存对该物品产生过行为的用户列表。可以用以下代码实现:#建立物品倒排表,计算物品相似度 def itemCF(user_dict): N=dict() C=defaul...原创 2018-04-23 16:06:12 · 1415 阅读 · 0 评论 -
推荐系统----第三章(基于物品的协同过滤算法)
基于物品的协同过滤算法基于物品的协同过滤算法是目前业界应用最多的算法。算法主要分为两步计算物品之间的相似度根据物品的相似度和用户的历史行为给用户生成推荐列表其中,分母是喜欢物品i的用户数,而分子是同时喜欢物品i和物品j的用户数,因此上述公式可以理解为喜欢物品i的用户中有多少比例的用户也喜欢物品j,但上述公式存在一个问题,如果物品j很热门,很多人喜欢,那么得到的W值就会很大,接近1。因此,该公式会造...原创 2018-04-23 16:49:08 · 1082 阅读 · 0 评论