推荐系统----第二章(基于领域的算法-基于用户的协同过滤)

本文探讨了基于用户的协同过滤算法在推荐系统中的应用,指出在处理大量数据时,计算相似度的时间复杂度问题。为解决这一问题,提出了通过构建物品到用户的倒排表来优化,从而提高效率。同时提供了计算用户相似度的Python代码示例。
摘要由CSDN通过智能技术生成

基于用户的协调过滤算法




但是在该过程计算相似度时,算法的时间复杂度往往会很高,到遇到很大的数据量时会非常的耗时,事实上,很多用户相互之间并没有对同样的物品产生过行为,为此,可以构建一个物品到用户的倒排表,对于每个物品都保存对该物品产生过行为的用户列表。可以用以下代码实现:

#建立物品倒排表,计算物品相似度
def itemCF(user_dict):
    N=dict()
    C=defaultdict(defaultdict)
    W=defaultdict(defaultdict)
    for key in user_dict:
        for i in user_dict[key]:
            if i[0] not in N.keys(): #i[0]表示movie_id
                N[i[0]]=0
            N[i[0]]+=1               #N[i[0]]表示评论过某电影的用户数
            for j in user_dict[key]:
                if i==j:
                    continue
                if j[0] not in C[i[0]].keys():
                    C[i[0]][j[0]]=0
                C[i[0]][j[0]]+=1      #C[i[0]][j[0]]表示电影两两之间的相似度,eg:同时评论过电影1和电影2的用户数
    for i,related_item in C.items():
        for j,cij in related_item.items():
            W[i][j]=cij/math.sqrt(N[i]*N[j])
    return W

完整的计算用户相似度的算法可参考以下代码:

# coding=utf-8

from math import sqrt
import pandas as pd
import tqdm

#line = [user,source,item,lable]
users = {}
users_list = list()
path = 'C:...'
for line in open(path+"..."):
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值