本文有很多问题,LINE方法暂时略过
1. 一阶相似性
联合概率:一阶相似性实质上是一个sigmoid function函数,向量越接近,点积越大,联合概率越大(有点硬扯)
经验概率:两点之间边的权值越大,经验概率越大
为了保持一阶相似性,一个简单的办法是最小化两者之间的相对熵
因此一阶相似度只能用于无向图,不能用于有向图
2. 二阶相似性
二阶相似度假设共享邻居的顶点彼此相似。每个顶点扮演两个角色:顶点本身和其他顶点的邻居。因此,为每个节点引入两个向量表示ui和ui:ui是vi被视为顶点时的表示,ui
是当vi被视为特定邻居时的表示。