LINE 方法部分

本文有很多问题,LINE方法暂时略过

1. 一阶相似性

联合概率一阶相似性实质上是一个sigmoid function函数,向量越接近,点积越大,联合概率越大(有点硬扯)
经验概率:两点之间边的权值越大,经验概率越大
为了保持一阶相似性,一个简单的办法是最小化两者之间的相对熵
因此一阶相似度只能用于无向图,不能用于有向图
在这里插入图片描述
在这里插入图片描述

2. 二阶相似性

二阶相似度假设共享邻居的顶点彼此相似。每个顶点扮演两个角色:顶点本身和其他顶点的邻居。因此,为每个节点引入两个向量表示ui和ui:ui是vi被视为顶点时的表示,ui是当vi被视为特定邻居时的表示。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值