这是一道非常典型的DFS的题目(虽然官方说他有问题对于hack数据可能这个题目就是错的)
我们来看题目:
我们做题首先看数据:
这种数据的话我们首先就直接考虑暴力dfs
怎么思考?
1.字符串拼接,最短首字符串的后缀和链接字符串的前缀相等
2.head字符有多条路线可以
3.每个字符可以使用两次
对于第一点,我们可能有人回想KMP之类的东西,但是数据非常小 我们直接可以用暴力去做
第二点我们可以标记每个字符
第三点我们一般的dfs用一个bool类型st数组标记,这边用一个int类型就行
当然对于第一点有个很重要的就是 我们如果在dfs当中去处理 时间复杂度等于
O(dfs时间复杂度)*O(处理时间复杂度)
dfs时间复杂度 n!
处理时间复杂度s1.size()*s2.size();
就对于这样的数据都有超时的可能!!
所以我们需要去预处理一下字符串!!(用vis[N][N]存储s1为首字符串s2链接字符串的最短长度 init函数 处理)
最终答案:
#include<bits/stdc++.h>
using namespace std;
const int N = 30;
string arr[N];
bool st[N];
int st2[N];
int vis[N][N];
int n;
char head;
int ans = 0;
int endans;
void init(int x, int y) {
int res = 1;
while (res < arr[x].size()) {
for (int i = arr[x].size()-res; i < arr[x].size(); i++) {
bool flag = 0;
for (int j = 0; j < res; j++) {
if (arr[x][i+j] != arr[y][j]) {
flag = 1;
break;
}
}
if (flag) break;
else {
vis[x][y] = res;
return;
}
}
res++;
}
}
void dfs(int x) {
endans = max(endans, ans);
for (int i = 1; i <= n; i++) {
if (st2[i] == 2) continue;
if (vis[x][i] == 0) continue;
ans += arr[i].size() - vis[x][i];
st2[i]++;
dfs(i);
st2[i]--;
ans -= arr[i].size() - vis[x][i];
}
}
int main() {
cin >> n;
for (int i = 1; i <= n; i++)cin >> arr[i];
cin >> head;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
init(i, j);
}
}
for (int i = 1; i <= n; i++) {
if (arr[i][0] == head) st[i] = 1;
}
for (int i = 1; i <= n; i++) {
if (st[i]) {
st2[i] = 1;
ans += arr[i].size();
dfs(i);
ans -= arr[i].size();
st2[i] = 0;
}
}
cout << endans;
}
注:字符串我用全局,所以在函数中处理我直接用其下标处理(效率更高更方便)
注意考虑剪枝