HDU 1695(容斥+欧拉函数+素数分解)

22 篇文章 0 订阅
18 篇文章 0 订阅

hdu 1695
题目大意:
求  xϵ(1,n) ,   yϵ(1,m) ,   gcd(x,y)=k x,y 的对数;
思路:
n<m
xϵ(1,n) ,   yϵ(1,n) num1gcd(x,y)=φ(nk) ;
xϵ(1,n) ,   yϵ(n+1,m) , 因式分解 x , num2=nknum(1nkx), 使用容斥解决;
ans=num1+num2 ;

#include <iostream>
#include <cstdio>
#define LL __int64
#define N 100002

using namespace std;

LL euler[N];

struct Num
{
    int prim[20];
    int num;
}c[N];

void init_Euler()    //euler打表+素数分解
{
    for (int i = 0; i < N; i++)
    {
        c[i].num = 0;
        euler[i] = 0;
    }

    euler[1] = 1;

    for (int i = 2; i < N; i++)
    {
        if (!euler[i])
        {
            for (int j = i; j < N; j += i)
            {
                if (!euler[j])
                {
                    euler[j] = j;
                }

                euler[j] = euler[j] / i * (i - 1);

                c[j].prim[c[j].num] = i;
                c[j].num++;
            }
        }

        euler[i] += euler[i-1];
    }
}

LL get_ans(int pi, LL n)   //枚举版
{
    LL ans = 0;

    for (int i = 1; i < (1 << c[pi].num); i++)
    {
        int tmp = 1, flag = 0;

        for (int j = 0; j < c[pi].num; j++)
        {
            if (i & (1 << j))
            {
                flag++;
                tmp *= c[pi].prim[j];
            }
        }

        if (flag & 1)
        {
            ans += n / tmp;
        }
        else
        {
            ans -= n / tmp;
        }
    }

    return ans;
}

LL dfs(int index, LL b, LL n)   //递归版
{
    LL ans = 0, t;

    for (int i = index; i < c[n].num; i++)
    {
        t = b / c[n].prim[i];
        ans += t - dfs(i + 1, t, n);
    }

    return ans;
}

int main()
{
    int T;
    init_Euler();

    while (~scanf("%d", &T))
    {
        for (int cas = 1; cas <= T; cas++)
        {
            int a, c;
            LL b, d, k;

            scanf("%d%I64d%d%I64d%I64d", &a, &b, &c, &d, &k);

            if (k == 0)
            {
                printf("Case %d: 0\n", cas);
                continue;
            }

            if (b > d)
            {
                swap(b, d);
            }

            LL tmp = b / k;
            LL ans = euler[tmp];

            if (b == d)
            {
                printf("Case %d: %I64d\n", cas, ans);
                continue;
            }

            b /= k;
            d /= k;

            for (int i = b + 1; i <= d; i++)
            {
                // ans += b - get_ans(i, b);
                ans += b - dfs(0, b, i);
            }

            printf("Case %d: %I64d\n", cas, ans);
        }
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值