题目大意:
已知
k,p
,求
∑φ(xi)
,
xi=∏kai
,
ai
为素数表前
p
位的数,其中
思路:
φ(c)=φ(n)∗φ(m)
, 其中
c=m∗n
,
gcd(m,n)=1
;
φ(n)=n−1;n
为素数;
可以枚举
1∼k
个数,
如果为没有出现过的数,即该数与枚举到当前情况的积互素,乘以
prime[i]−1
;
否则乘以
prime[i]
,
∵φ(x)=x∗∏(x−1pi),pi
为
x
的素因子;
即:
dp[i][j]={dp[i][j]+dp[i−1][j]∗prime[j];枚举到第i个数时,没出现新素数dp[i][j]+dp[i−1][j−1]∗(prime[j]−1);枚举到第i个数时,出现新素数;
#include <iostream>
#include <cstring>
#include <cstdio>
#define LL long long
#define N 502
#define M 4000
#define MOD 1000000007
using namespace std;
bool not_prime[M];
int prim[N*2];
LL dp[N][N];
void init()
{
memset(not_prime, 0, sizeof(not_prime));
memset(dp, 0, sizeof(dp));
prim[1] = 0;
int cnt = 0;
for(int i = 2; i < M; i++)
{
if(!not_prime[i])
{
prim[++cnt] = i;
for(int j = i + i; j < M; j += i)
{
not_prime[j] = 1;
}
}
}
dp[0][0] = 1;
for (int i = 1; i <= 500; i++)
{
for (int j = 1; j <= i; j++)
{
dp[i][j] = (dp[i][j] + dp[i-1][j] * prim[j]) % MOD;
dp[i][j] = (dp[i][j] + dp[i-1][j-1] * (prim[j] - 1)) % MOD;
}
}
}
int main()
{
init();
int T;
scanf("%d", &T);
for (int cas = 1; cas <= T; cas++)
{
int n, m;
scanf("%d%d", &n, &m);
printf("Case %d: %lld\n", cas, dp[n][m]);
}
return 0;
}