LightOj 1298

题目大意:

已知 k,p ,求 φ(xi) , xi=kai , ai 为素数表前 p 位的数,其中kp;

思路:

φ(c)=φ(n)φ(m) ,  其中  c=mn ,   gcd(m,n)=1 ;
φ(n)=n1;n 为素数;
可以枚举 1k 个数,
如果为没有出现过的数,即该数与枚举到当前情况的积互素,乘以 prime[i]1 ;
否则乘以 prime[i]
φ(x)=x(x1pi),pi x 的素因子;
ans=φ(p)kpbi,bi为素数表中前 p 位的数;
当前的素因子出现过时乘以 prime[i] ;
即:  dp[i][j]={dp[i][j]+dp[i1][j]prime[j];idp[i][j]+dp[i1][j1](prime[j]1);i;

#include <iostream>
#include <cstring>
#include <cstdio>
#define LL long long
#define N 502
#define M 4000
#define MOD 1000000007

using namespace std;

bool not_prime[M];
int prim[N*2];
LL dp[N][N];

void init()
{
    memset(not_prime, 0, sizeof(not_prime));
    memset(dp, 0, sizeof(dp));

    prim[1] = 0;
    int cnt = 0;

    for(int i = 2; i < M; i++) 
    {  
        if(!not_prime[i]) 
        {   
            prim[++cnt] = i;
            for(int j = i + i; j < M; j += i)
            {  
                not_prime[j] = 1;  
            }  
        }  
    }  

    dp[0][0] = 1;

    for (int i = 1; i <= 500; i++)
    {
        for (int j = 1; j <= i; j++)
        {
            dp[i][j] = (dp[i][j] + dp[i-1][j] * prim[j]) % MOD;
            dp[i][j] = (dp[i][j] + dp[i-1][j-1] * (prim[j] - 1)) % MOD;
        }
    }
}

int main()
{
    init();

    int T;
    scanf("%d", &T);

    for (int cas = 1; cas <= T; cas++)
    {
        int n, m;
        scanf("%d%d", &n, &m);

        printf("Case %d: %lld\n", cas, dp[n][m]);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值