题目
用python做题,给出详细的解题思路和代码注释:给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [5,4,-1,7,8]
输出:23
答案
这个问题是一个经典的动态规划问题,也被称为最大子序列和问题。我们可以使用 Kadane 算法来解决这个问题。Kadane 算法是一种适用于动态规划问题的算法,用于查找最大子序列和。
以下是使用 Python 实现的代码:
def maxSubArray(nums):
# 初始化当前子数组的和和最大和
current_sum = max_sum = nums[0]
# 遍历数组
for i in range(1, len(nums)):
# 更新当前子数组的和
current_sum = max(nums[i], current_sum + nums[i])
# 更新最大和
max_sum = max(max_sum, current_sum)
return max_sum
在这段代码中,我们首先初始化当前子数组的和 current_sum
和最大和 max_sum
,都设为数组的第一个元素 nums[0]
。然后我们遍历数组的其余部分。对于每个元素 nums[i]
,我们更新当前子数组的和 current_sum
,将其设为 nums[i]
和 current_sum + nums[i]
中的最大值。然后我们更新最大和 max_sum
,将其设为 max_sum
和 current_sum
中的最大值。最后,我们返回最大和 max_sum
。
这段代码的时间复杂度为 O(n),其中 n 是数组的长度。因为我们只遍历了一次数组。空间复杂度为 O(1),因为我们只需要存储两个变量。