通常,正整数 n
的阶乘是所有小于或等于 n
的正整数的乘积。例如,factorial(10) = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
。
相反,我们设计了一个笨阶乘 clumsy
:在整数的递减序列中,我们以一个固定顺序的操作符序列来依次替换原有的乘法操作符:乘法(*),除法(/),加法(+)和减法(-)。
例如,clumsy(10) = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1
。然而,这些运算仍然使用通常的算术运算顺序:我们在任何加、减步骤之前执行所有的乘法和除法步骤,并且按从左到右处理乘法和除法步骤。
另外,我们使用的除法是地板除法(floor division),所以 10 * 9 / 8
等于 11
。这保证结果是一个整数。
实现上面定义的笨函数:给定一个整数 N
,它返回 N
的笨阶乘。
示例 1:
输入:4 输出:7 解释:7 = 4 * 3 / 2 + 1
示例 2:
输入:10 输出:12 解释:12 = 10 * 9 / 8 + 7 - 6 * 5 / 4 + 3 - 2 * 1
思路:
按照题意,每四个数组成一组 * / + - 的运算,所以先四个四个一组的处理好,最后判断一下还剩几个数字,再对结果做出相应的改变。
import math
class Solution(object):
def clumsy(self, N):
"""
:type N: int
:rtype: int
"""
if N == 1:
return 1
elif N == 2:
return 2
elif N == 3:
return 6
res = 0
cnt = N
op = 1
while(N >= 4):
res += int(math.floor(N * (N - 1) / (N -2)) * op)
res += N - 3
if op == 1:
op = -1
N -= 4
if N == 0:
return res
elif N == 1:
return res - 1
elif N == 2:# 6 *5 /4 +3-2*1
return res - 2
else: #7*6/5+4-3*2/1
return res - 6