LeetCode-Python-1091. 二进制矩阵中的最短路径

在一个 N × N 的方形网格中,每个单元格有两种状态:空(0)或者阻塞(1)。

一条从左上角到右下角、长度为 k 的畅通路径,由满足下述条件的单元格 C_1, C_2, ..., C_k 组成:

  • 相邻单元格 C_i 和 C_{i+1} 在八个方向之一上连通(此时,C_i 和 C_{i+1} 不同且共享边或角)
  • C_1 位于 (0, 0)(即,值为 grid[0][0]
  • C_k 位于 (N-1, N-1)(即,值为 grid[N-1][N-1]
  • 如果 C_i 位于 (r, c),则 grid[r][c] 为空(即,grid[r][c] == 0

返回这条从左上角到右下角的最短畅通路径的长度。如果不存在这样的路径,返回 -1 。

示例 1:

输入:[[0,1],[1,0]]
输出:2

示例 2:

输入:[[0,0,0],[1,1,0],[1,1,0]]
输出:4

提示:

  1. 1 <= grid.length == grid[0].length <= 100
  2. grid[i][j] 为 0 或 1

思路:

问最短路径就上BFS。

from collections import deque
class Solution(object):
    def shortestPathBinaryMatrix(self, grid):
        """
        :type grid: List[List[int]]
        :rtype: int
        """
        n = len(grid)
        # print n

        if grid[0][0] or grid[-1][-1] == 1:
            return -1
        queue = deque([[[0, 0], 1]])
        visited = set((0,0))
        dx = [1, -1, 0, 0, 1, -1, -1, 1]
        dy = [0, 0, 1, -1, -1, 1, -1, 1]
        cnt = 1
        record = dict()
        while queue:
            cur, cnt = queue.popleft()
            x0, y0 = cur[0], cur[1]
            
            if x0 == n - 1 and y0 == n - 1:
                return cnt
            for k in range(8):
                x = x0 + dx[k]
                y = y0 + dy[k]
                
                if 0 <= x <n and 0 <= y < n and grid[x][y] == 0 and (x, y) not in visited:
                    visited.add((x, y))
                    queue.append([[x, y], cnt + 1])
        return -1
        

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值