SAR and Optical Image Registration Using Nonlinear Diffusion and Phase Congruency Structural Descrip

这是TGRS_2018的一篇文章:
针对两个问题做了针对性的改进:

  1. 关键点的检测,不具有辐射不变性,且分布不均匀。GS-Harris算法使用Gaussian blur处理图像,会将边缘模糊
    因此,我们提出UND-Harris来检测关键点。
    UND-Harris结合了nonlinear diffusion,feature proportion和block strategy。其中nonlinear diffusion参考《SAR image registration using phase congruency and nonlinear diffusion-based》,feature propotation是在多个尺度中(类似于SIFT的多尺度提取特征,尺度选为8)都提取特征点。
    block strategy是将整幅图分为n*n个block,然后在每个block中都提取特征点。

2.特征描述
针对SAR和optical中非线性辐射变化,提出Phase Congruency Structural Descriptor Construction。步骤为:
(1)在多个尺度提取PC特征,并按照一定权重将他们组合起来
在这里插入图片描述

(2)得到整张图的PC后,根据PC值的大小将各个像素排序,并按照前30%,中间40%,最后30%将像素分类,分类结果如下:
在这里插入图片描述
(4)根据分类结果,在每个类别的区域中,构建LSS描述符。然后,将所有类别的LSS描述符汇总后构成PCSD描述符
在这里插入图片描述
PCSD和LSS的不同:

1.LSS是基于图像值构建的,而PCSD是基于PC构建的

2.LSS的分辨能力差;而PCSD采用了分组-组内LSS-组内特征融合,所以分辨能力高

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值