这是TGRS_2018的一篇文章:
针对两个问题做了针对性的改进:
- 关键点的检测,不具有辐射不变性,且分布不均匀。GS-Harris算法使用Gaussian blur处理图像,会将边缘模糊
因此,我们提出UND-Harris来检测关键点。
UND-Harris结合了nonlinear diffusion,feature proportion和block strategy。其中nonlinear diffusion参考《SAR image registration using phase congruency and nonlinear diffusion-based》,feature propotation是在多个尺度中(类似于SIFT的多尺度提取特征,尺度选为8)都提取特征点。
block strategy是将整幅图分为n*n个block,然后在每个block中都提取特征点。
2.特征描述
针对SAR和optical中非线性辐射变化,提出Phase Congruency Structural Descriptor Construction。步骤为:
(1)在多个尺度提取PC特征,并按照一定权重将他们组合起来
(2)得到整张图的PC后,根据PC值的大小将各个像素排序,并按照前30%,中间40%,最后30%将像素分类,分类结果如下:
(4)根据分类结果,在每个类别的区域中,构建LSS描述符。然后,将所有类别的LSS描述符汇总后构成PCSD描述符
PCSD和LSS的不同:
1.LSS是基于图像值构建的,而PCSD是基于PC构建的
2.LSS的分辨能力差;而PCSD采用了分组-组内LSS-组内特征融合,所以分辨能力高