- 博客(10)
- 收藏
- 关注
原创 Decoupling Makes Weakly Supervised Local Feature Better阅读笔记
这是一种Decoupled training describe-then-detect pipeline(解耦式训练描述然后检测)的过程,把关键点检测网络分离出来,首先训练描述子生成网络,直到得到鲁棒的描述子后再对关键点检测网络进行训练。因为经过描述子对提取特征点也可以起到积极的作用,并且解耦的方式可以使得损失明确,知道损失到底是对应特征点的还是对应描述子的。这就是传统三种特征检测匹配的框架,先检测后计算描述子,先训练描述子后检测和解耦式训练描述然后检测。
2024-07-01 00:13:53 677 1
原创 Attentional Feature Fusion 注意力整合模块
第一个分支是全局分支进行通道维度交互,第二个是通道局部维度交互,第一个分支得到的维度是B*C*1*1,第二个分支得到的是和输入一样的形状B*C*H*W。X和Y是不同的特征(例如X是3*3卷积得到的特征,Y是7*7卷积得到的特征,X和Y是并行分支),把X和Y相加传入到MS-CAM注意力模块中,输出为一个张量M为B*C*H*W,则X与M逐点相乘,Y与(1-M)逐点相乘,最后相加。先将X和Y经过一次上述的AFF操作,得到的初始整合特征,再将整合后的特征再次输入到AFF中。表示如何整合X和Y,通常是直接相加。
2024-06-22 22:49:10 425
原创 ALIKE: Accurate and Lightweight Keypoint Detection and Descriptor Extraction阅读笔记
在本文中,提出了ALIKE,一种端到端的准确且轻量级的关键点检测和描述符提取网络。它使用可微分的关键点检测模块来检测准确的亚像素关键点。然后利用提出的重投影损失和分散性峰值损失来训练关键点。除了关键点外,还使用NRE损失来训练具有辨别性的描述符,并提出了可靠性损失来强制关键点的可靠性。
2024-06-22 22:12:02 1004
原创 MTLDesc: Looking Wider to Describe Better阅读笔记
为了获得多样化的周围上下文,所以把描述子张量进行解耦成四个(h/4,w/4,32)的张量,分别使用不同的卷积来提取特征(描述子),使用一个1*1的卷积核三个3*3的膨胀卷积(膨胀率分别为6,12,18),这样使得描述子能够获得多样化不同周围大小的信息,提升描述子质量,最后把解耦的四个张量再拼接成(h/4,w/4,128)与原始输入再进行融合就得到了最终的描述子张量D(h/4,w/4,128)。从损失函数中可以看出当||x||+小而||x||-大的时候,损失小,效果好,所以反向传播时会把。
2024-06-22 21:14:08 810
原创 Learning Feature Descriptors using Camera Pose Supervision阅读笔记(论文版)
首先指出问题:现有的描述符学习框架通常需要用于训练的特征点之间的地面真实对应关系,但是获取大规模这样的数据是困难的,作者提出了一种基于从图像之间的相对相机姿态学习特征描述符,利用极线约束来约束网络学习方向。代码过程讲解可以看。
2024-03-20 21:46:12 2136 1
原创 Learning Feature Descriptors using Camera Pose Supervision阅读笔记(代码版)
然后计算点到极线的距离。输入图像x(480*640)batchsize=5,x1是经过网络第一个模块输出的,首先经过初始的卷积和池化,分辨率降到原来的1/4,然后经过第一层x1为(5,256,120,160),x2为第二个模块输出,x2为(5,512,60,80),然后经过第三个模块为x3,x3为(5,1024,30,40),共享网络到此结束,下面是输出粗级别图和细级别图。输入coord1(原始提取的特征点),coord1_lc(通过期望点反到第一张图粗级别的期望点),weight_cycle_c。
2024-03-20 20:30:23 1733 1
原创 R2D2: Repeatable and Reliable Detector and Descriptor阅读笔记
在训练过程中,通常会利用正样本对和负样本对来调整模型参数,以使得正样本之间的距离尽可能小,而负样本之间的距离尽可能大。这有助于特征点匹配算法更好地区分不同实体之间的特征点,从而提高匹配的准确性和鲁棒性。在特征点提取与匹配当中,就是,通过学习调整参数,使得学习出来的描述子,两张图中对应特征点他们的描述子之间相似度大,而不同特征点对应的描述子之间的相似度小。
2024-03-15 21:43:31 1617
原创 第三周学习,ResNet+ResNext
网络的深度对模型的性能至关重要。当增加网络层数后,网络可以进行更加复杂的特征模式的提取,获取到的图片特征信息越全,学习效果也就越好。所以当模型更深时理论上可以取得更好的结果。但是在实际的试验中发现,更深的网络其性能不一定会更好。一是梯度消失和梯度爆炸梯度消失:若每一层的误差梯度小于1,反向传播时,网络越深,梯度越趋近于0梯度爆炸:若每一层的误差梯度大于1,反向传播时,网络越深,梯度越来越大二是随着网络层数的增多,会带来退化问题,阻碍网络的训练。
2023-07-28 10:41:41 190
原创 第一周学习记录:深度学习和Pytorch基础
凡是用Tensor进行各种运算的,都是Function最终,还是需要用Tensor来进行计算的,计算无非是基本运算,加减乘除,求幂求余布尔运算,大于小于,最大最小线性运算,矩阵乘法,求模,求行列式print(x.size(0),x.size(1),x.size(),sep='--') #打印出x的行数,列数,以及行列数print(x.numel()) #打印出张量共多少数据量print(x[0][2]) #打印出第0行第二列的数据print(x[:,1]) #打印出第一列。
2023-07-12 22:43:23 166 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人