Aggregating Gradient Distributions into Intensity Orders: A Novel Local Image Descriptor

作者贡献

1.Unlike the undertaking in many popular descriptors where a dominant orientation is assigned to the descriptor for it to be rotation invariant, our descriptor is inherently rotation invariant thanks to a rotation invariant way of gradient computation
现有的局部特征描述符为了获得旋转不变性,需要计算特征的主方向,然后相对于该主方向来提取特征;但是,主方向的计算不够准确和鲁棒,从而导致特征的鲁棒性下降;本文的方法不需要提取主方向,本文提取特征的方法本身就具有旋转不变性
2.To encode spatial information and take into consideration of intensity distributions, sample points are segmented based on their intensity orders, rather than their geometric locations. Thus no orientation is required for reference
3. Gradient distributions are pooled within such order segments, rather than in fixed subregions.
现有方法为了对空间编码,将template分为多个cell,每个cell的大小为m*m个pixels;然后在每个cell中统计梯度分布作为特征,然后将多个cell的特征组合在一起构成了template的特征;现有方法划分cell时是根据其geometric locations,不够灵活; 我们也将template划分为多个sub_region,分别提取每个sub_region的特征,合并后即为template的特征。其中,划分的依据是:将template中的像素根据其像素值排序,然后根据其像素值序号划分为不同的sub_region.
4.It uses multiple support regions to further improve its discriminative ability.
对一个兴趣点在多个感受野中提取其特征(可以理解为使用多种超参数来提取其特征,这里的超参数是感受野的大小)
其中,第2,3,4的过程如下图在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

第1点的过程如下:
对于兴趣点P,在P点为中心的patch(圆形的patch)提取其特征;Pi是以P点为中心的patch中的一个点;
以PPi为Y轴构建坐标系;
然后沿着该坐标系的x轴,y轴,提取点Pi的梯度;
patch中的每个点的梯度的统计结果,构成兴趣点P的特征。
由于patch是原型的,且以PPi为y轴,所以这种方法构造的特征具有旋转不变性。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值