Aggregating Gradient Distributions into Intensity Orders: A Novel Local Image Descriptor

作者贡献

1.Unlike the undertaking in many popular descriptors where a dominant orientation is assigned to the descriptor for it to be rotation invariant, our descriptor is inherently rotation invariant thanks to a rotation invariant way of gradient computation
现有的局部特征描述符为了获得旋转不变性,需要计算特征的主方向,然后相对于该主方向来提取特征;但是,主方向的计算不够准确和鲁棒,从而导致特征的鲁棒性下降;本文的方法不需要提取主方向,本文提取特征的方法本身就具有旋转不变性
2.To encode spatial information and take into consideration of intensity distributions, sample points are segmented based on their intensity orders, rather than their geometric locations. Thus no orientation is required for reference
3. Gradient distributions are pooled within such order segments, rather than in fixed subregions.
现有方法为了对空间编码,将template分为多个cell,每个cell的大小为m*m个pixels;然后在每个cell中统计梯度分布作为特征,然后将多个cell的特征组合在一起构成了template的特征;现有方法划分cell时是根据其geometric locations,不够灵活; 我们也将template划分为多个sub_region,分别提取每个sub_region的特征,合并后即为template的特征。其中,划分的依据是:将template中的像素根据其像素值排序,然后根据其像素值序号划分为不同的sub_region.
4.It uses multiple support regions to further improve its discriminative ability.
对一个兴趣点在多个感受野中提取其特征(可以理解为使用多种超参数来提取其特征,这里的超参数是感受野的大小)
其中,第2,3,4的过程如下图在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

第1点的过程如下:
对于兴趣点P,在P点为中心的patch(圆形的patch)提取其特征;Pi是以P点为中心的patch中的一个点;
以PPi为Y轴构建坐标系;
然后沿着该坐标系的x轴,y轴,提取点Pi的梯度;
patch中的每个点的梯度的统计结果,构成兴趣点P的特征。
由于patch是原型的,且以PPi为y轴,所以这种方法构造的特征具有旋转不变性。
在这里插入图片描述

内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势与难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识与重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用人群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研读名校考研真题,考生可以准确把握考研命题趋势与难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示与运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习与实践操作,注重理解与应用,以提高应试能力和专业知识水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值